Word Grammar Recognition is
NP-hard

HANS VAN DE KOOT

1 Introduction

The aim of this paper is to demonstrate that Word Grammar' Recognition
(WGR) is computationally intractable, in particular that it is NP-hard®. 1 will
show that the source of WG’s computational complexity lies in its unnaturally
powerful machinery for feature inheritance’. WG shares this weakness with
Lexical Functional Grammar, which contains very similar machinery allowing
unrestricted hierarchical feature unification. The proof | present is similar to
the NP-hardness proof for LFG' Recognition in Barton, Berwick and Ristad
(1987).

The paper is organized as follows. 1 first discuss some key concepts and
techniques from the theory of computational complexity (section 2). In section
3. I apply the notion of complexity to linguistic theories and discuss how we
may distinguish between natural and unnatural computational complexity. In
section 4 | prove that Word Grammar Recognition is NP-hard.

2 Computational complexity theory
2.1 Easy and hard problem: the classes P and NP
A lot of everyday problems like alphabetical sorting can be solved in

polynomial time on a normal computer (that is in time r/ or less, for some
integer j). Such problem are called tractable. Table (1) (after Garey and

'Hudson (1984) and (1990).

*See section 2 below for a definition.

*Default inheritance plays a vital role throughout WG. My proof will rely on the fact
that in WG a head may inberit all the features of its complement for which it is itself
specified.

‘Bresnan (1978) and (1982).

408 Hans van de Koot

Johnson 1979) shows why. Complexity theory dubs this class P: the class of
problem solvable in Polynomial time on a deterministic TM.

(1)
Problem size, n
Time compl. 10 50 100
n’ .001 sec .125 sec 1.0 sec
2 .001 sec 35.7 years 10" cent

Other problems take longer, no matter how hard one tries to write an
algorithm that will do better. Famous examples are the travelling sales person
problem and Satisfiability (or SAT). SAT goes likes this. Given an arbitrary
Boolean formula like (2)

2) xvyvzZ)alyvzvuoa@xvzvue)aK vyvu)

is there an assignment of true and false to the propositional letters such that
the whole expression is true (a is true if a’ is false and vice versa). In fact, (2)
is a restricted version of SAT called 3SAT in which every clause contains
exactly 3 literals. 3SAT is not easier than SAT. 3SAT is difficult because all
one can do to solve an instance of it is guess an assignment of truth values to
the literals and test for satisfaction. This means that in the worst case one may
have to try out all possible assignments. With n binary valued variables in an
arbitrary formula, one will end up testing 2" truth-value assignments. Since the
number of different variables can obviously rise with the length of the
formula, the complexity of SAT is proportional to 2", or exponential time.
Such problem are called intractable and again table (1) shows why. The entries
in this table assume that each algorithmic instruction takes 1 microsecond, but
the shape of the curve relating problem size to processing time is what is
really important.

Given any 3SAT formula, we can verify quite quickly whether a given
guess is a good one or a bad one. All we have to do is walk through the
formula from left to right checking whether our guess makes each clause true.
It should be intuitively clear that this can be done in polynomial time
(proportional to length of formula times length of guess list).

Taking this one step further, suppose we had a computer that could try
out all guesses for the 3SAT problem in parallel. Clearly, such a computer

Word Grammar Recognition is NP-hard 409

could solve 3SAT in polynomial time. Such a guessing computer is called
nondeterministic and the class of problems solvable by a Nondeterministic
computer in Polynomial time is called NP.

Complexity theorists have discovered many problems like SAT, which
have the property that they only seem to have exponential-lime deterministic
solutions, but which have efficient nondeterministic solutions. We do not have
a proof for an exponential time lower bound on the complexity of these
problems, but it is strongly suspected that P # NP.

All problems in P are of course also in NP. But problems like SAT
summarize the complexity of a whole class of problems which are in NP and
not known (o be in P. This class is held together by a method called
reduction, which 1 discuss below. The problems in this class are called NP-
hard, because they are as hard as any problem in NP. If an NP-hard problem
is in addition known to be solvable by the hypothetical guessing computer, as
is 3SAT, then it is called NP-complete.

2.2 The reduction technique

Showing that one problem is as difficult as another relies on a technique called
reduction. Here is how it works. One starts off with a problem of known
complexity, like 3ISAT. One then constructs an efficient mapping from the
problem of known complexity to the new problem, preserving Yes/No
solutions. In this context efficient means polynomial time. If this can be done,
then the new problem must be NP-hard. This is easy to see. Suppose that the
new problem could be solved in polynomial time. Then the old problem,
which we assumed was intractable. is solvable in polynomial time as well.
This is becausc the composition of two polynomial time functions is itself a
polynomial time function.

If in addition an NP-completeness proof is desired one should
demonstrate that the new problem can be solved in polynomial time by the
hypothetical guessing computer.

3 Natural vs unnatural computational complexity

Over the past 5 years evidence has been accumulating that the general natural
language comprehension problem (L.C problem) is NP-hard and possibly NP-
complete (cf. Barton, Berwick and Ristad 1987 and especially Ristad 1991).
Ristad (op. cit.) applies the tool of complexity analysis to obtain NP-hardness

410 Hans van de Koot

results for various aspects of the LC problem which hold irrespective of the
particulars of any linguistic theory.

These results are likely to have a dramatic effect on our appraisal of the
complexity of the universal recognition problem for grammatical theories®, as
they lead us to expect that certain parts of linguistic theories will inherit the
complexity of the LC problem. An example should make clear why.

Ristad (op. cit.) defines the Anaphora Problem as follows:

(3) Anaphora Problem
Given a structural description S lacking only relations of referential
dependency, and a set A of available antecedents, decide if all anaphoric
elements in § can find their antecedent in A.

He demonstrates that the Anaphora Problem is NP-hard. His proof abstracts
away completely from the particulars of linguistic theories of anaphora. But
given the proof, it immediately follows that the Recognition Problem for any
syntactic theory which poses the Anaphora Problem will be NP-hard.
Anaphora resolution in GB theory is not NP-hard, but this is only because GB
does not pose the Anaphora Problem (as defined by Ristad).

Put from a different angle, direct complexity analysis helps us to
interpret the results of the complexity analyses of particular grammatical
theories, because it tells us in which parts of linguistic theory we should
expect complexity to show up. Complexity is "unnatural” if it shows up where
it is not needed.

Thus, suppose that a linguistic theory poses the Anaphora Problem, as
defined above. Then that part of the theory that deals with anaphora will be
able to solve NP-hard problems (assuming that the theory is descriptively
adequate with respect to anaphora). Such complexity is natural. By contrast,
suppose we have reason to believe that a certain linguistic phenomenon, say
subcategorization, is computationally simple. Then we would not be happy to
discover that our theory can model subcategorization phenomena that do not
in fact occur in natural languages.

Barton, Berwick and Ristad (1987) study the computational complexity
inherent in particular linguistic theories. Although this method is less direct
than Ristad’s direct complexity analysis, it is useful in that it may uncover

*The Universal Recognition Problem for a linguistic theory T has the following form:
given a senience x and a grammar G specified by 7, is x € L(G)?

Word Grammar Recognition is NP-hard 41)

aspects of linguistic theories which give rise to unnatural computational
complexity.

In the following section 1 will consider the computational complexity
inherent in the grammatical theory known as Word Grammar. 1 will show that
the unrestricted hierarchical feature inheritance that Word Grammar allows
makes its recognition problem NP-hard. The kind of complexity the proof
uncovers is unnatural, because the WG agreement machinery can model
agreement phenomena that are not found in natural languages.

Williams (1984) points out that many of the problems of the LFG f-
structure language stem from its failure to observe X'-restrictions®. Very much
the same is true of the way feature inheritance works in WG. There are no
"maximal projections” in WG to block further hierarchical feature inheritance.
As Williams observes with respect to LFG, this leads to a framework in which
one could force, say, the object of an embedded verb to be plural. Although
it is fairly obvious how X'-theory could be imported into the functional
language of LFG, | have no suggestions as to how one might go about
imposing similar restrictions on WG representations.

4 Word Grammar Recognition is NP-hard

We begin by defining the WG recognition problem with respect to an input
sentence x and a WG G as follows:

The WG Recognition Problem is: given a sentence x and a WG G, is
x e L(G)?

We then proceed with the reduction.
Theorem: WG Recognition (WGR) is NP-hard.
Proof. The reduction is from 3SAT. Given a 3SAT instance ' of length n

using the variables x,...x,,, reduce 3SAT, a known NP-complete problem to
WGR in polynomial time.

“LFG has X -theory in its constituent structure but not in ils f-structure.

"For instance, a senience such as (2) above.

412 Hans van de Koot

To construct the WGR problem, we map F into a sentence x to be tested for
WG membership. This involves erasing the parentheses and the v and A
symbols in F. We are left with just the string of literals.

Now we build the WG that we will use for the membership test. We must

write a WG with the following properties:

(i) It must reproduce the clause structure of 3SAT;

(ii) It must force at least one literal in each clause to be true;

(iii) It must use WG agreement machinery to enforce coherent truth
assignments.

This grammar will vary slightly with the problem instance (details follow).

Finally, we add lexical entries, one for each literal x, and x’. The lexicon

varies with the particular 3SAT instance.

Let us begin with (i). We define the WG to have three types of words: cat-1,
cat-2 and cat-3. cat-1 always selects cat-2, cat-2 always selects cat-3, and cat-3
always selects cat-1 or no complement at all.

Next we take care of (ii), the truth-satisfaction component. In each clause {(cat-
1,cat-2,cat-3) either cat-1 is true or it makes cat-2 promise to make the clause
true. Similarly, if cat-2 has promised cat-1 that it will make the clause true,
then either cat-2 itself is true or it makes cat-3 promise to make the clause
true. Clearly, if a category is true, it must leave its complement free to be
either true or false® To get this idea to work, we need to specify
subcategories of these word types. This is because the rules for complement
selection must be able to tell each complement what it is supposed to do. For
instance, a cat-2-tf is a category which has promised to make to make the
clause true, while a cat-2-n is a category that has promised nothing. There are
other clauses that define inheritance of category membership.

/* inheritance of category membership */

cat-1-t isa cat-1-tf.
cat-1-f isa cat-1-tf.
cat-1-tf isa cat-1.
cat-1-n isa cat-1.

*This technique is essentially the one Risiad (1991) uses for an aitempied NP-hardness
proof for the Barricrs model of grammar.

Word Graninar Recapnition is NP-hard 413

cat-2-1 isa cat-2-tf.
cat-2-f isa cat-2-tf.
cat-2-tf isa cat-2,
cat-2-n isa cat-2.

cat-3-t isa cat-3-tf.
cat-3-f isa cat-3-1f.
cat-3-tf isa cat-3.
cat-3-n isa cat-3.

cat-1-t isa cat-t.
cat-2-t isa cat-t.
cat-3-t isa cat-t.
cat-1-f isa cat-f.
cat-2-f isa cat-f.
cat-3-f isa cat-f.
cat-1-n isa cat-n.
cat-2-n isa cat-n.
cat-3-n isa cat-n.

cat-1 isa word.
cat-2 isa word,
cat-3 isa word.

/* selection of complements */

cat-1 has [1-1] complement.
cat-2 has [1-1] complement.
cat-3 has [0-1] complement.

type of object of cat-1-t = cat-2-n.
type of object of cat-1-f = cat-2-tf.
type of object of cat-2-t = cat-3-n.
type of object of cat-2-f = cat-3-t.
type of object of cat-2-n = cat-3-n.
type of object of cat-3 = cat-1-1f.

414 Hans van de Koot

/* features and feature inheritance */

WG allows a very general statement of feature agreement. What we want is
for a head to share all the features of its complements:”

feature of word = feature of complement of it.

In WG a word can only inherit a feature for which it is specified. This is to
block certain instances of feature inheritance'. For the proof to work. we
must ensure (i) that each word can inherit any feature and (ii) that each x, is
systematically associated with a feature f. We take care of (i) as follows
word has f,.

word has f,,

We take care of (ii) in the lexicon. For every x; we add the following four
entries:

/* lexicon */"

x; isa {/: cat-t, cat-n}.
S, of x, = true.

x’; isa {/: cat-f, cat-n}.
f; of xX°, = true.

x, isa {/: cat-f, cat-n}.
£ of x; = false.

x'; isa {/: cat-1, cat-n}.
£ of x*, = false.

“This is basically identical to the LFG f-stucture notation (1=T).

"For instance, in many languages onc wanis to prevent a preposition from inhceriting all
the features of its complement.

The symbol "%" is the WG-notation tor disjunction.

Word Grammar Recognition is NP-hard 415

This construction takes time polynomial in the size of F. The mapping of F
to a string x for WG recognition can be done in one pass through F. G also
takes polynomial time to build. The specification of category types is fixed
across problem instances. The number of features is linear in the number of
variable names. The lexicon can be constructed in time polynomial in the
length of F, because its size is proportional to 4m. We can keep track of the
variables that we have already seen in a list that we rescan at most a
polynomial number of times. Thus the total time to output the corresponding
WG is polynomial in the size of F.

We must now show that F is satisfiable iff x € L(G). Suppose that x € 1(G).
We must show that £ is satisfiable. If x € L(G), then by the rules for category
membership and selection there must be a derivation of a string of true and
false words such that of each triple of words at least one word is true. This
means that assigning the value true to the literal corresponding to this lexical
item yields a satisfying assignment (each clause contains at least one true
literal). WG agreement guarantees consistent assignments.

Now suppose that F is satisfiable. Then at least one literal in each clause must
be true. We must exhibit a valid WG derivation corresponding to this
satisfying assignment. We simply choose the pattern of selectional
dependencies that results in the appropriate pattern of true and false words.
This clearly can be done. Then, working from left to right we select words
corresponding to those in x, the mapping of F, making sure to pick the proper
entry depending on whether the item has to be true or false. This is clearly a
valid sentence in G, because it satisfies the WG-derivation and because
consistency of variable feature values guarantees satisfaction of WG
agreement. This completes the proof. QED.

416 Hans van de Koot

3SAT problem instance:
Is (% v x', v x) A (x, v x, v x.) satisfiable?

Answer: Yes, with x;=true

WG problem instance:
Is x.x'xx;x, %X, € L{G)?

Answer: Yes, with the following derivation:

£,=F
£,=F £,=F £=F £y=F
=T £,=T £,=T £,=T £,=T
£.=F £,=F £.=F f.=F £.= £.=F
[| I

1 I
cat-l-f—cat-2-t—3cat-3-n—cat-1l-f=dcat-2-t—pcat-3-n
I 1 I | 1 t
Xy x’. X, X Xy e,

(£,=F) (£,=F) (£,=T) (f,=F) (£:=T) (£,=F)

Figure 1 The reduction produces this derivation on a sample 3SAT instance.

References

Barton, G., R. Berwick and E. Ristad (1987). Compurational Complexity and
Natural Langnage. Cambridge, MA: MIT Press.

Bresnan, J. (1978). A Realistic Transformational Grammar. In M. Halle, J.
Bresnan and G. Miller, eds., Linguistic Theory and Psychological
Reatiry, Cambridge, MA: MIT Press.

Bresnan, J. (1982). The Mental Represestation of Granumatical Relations.
Cambridge:MIT Press.

Chomsky, N. (1986). Burriers. Cambridge: MIT Press.

Garey, M. and D. Johnson (1979). Computers and Intractahifite. San
Francisco: Freeman.

Hudson, R. 1984. Word Grammar. Oxford: Blackwell.

Hudson, R. 1990. English Word Grammar. Oxford: Blackwell.

Ristad, E. (1991). A Constructive Complexity Thesis for Human Language.
{Revised version of 1990 PhD Thesis] Ms. Princeton University.

Williams, E. (1984). Grammatical Relations. Linguistic Inquiry 15:639-673.

