Parsing with Principles: On
Constraining Derivations

HANS VAN DE KOOT

Abstract

In the recent parsing literature there have been relatively few attempts at giving
a precise implementation of (some version of) Government Binding Theory. In
this paper I discuss some approaches to principle-based parsing that aim at
providing faithful implementations of Government Binding grammars. Apart
from the fairly serious decidability problems facing simple-minded
implementations, having more than one syntactic level can give rise to rather
extreme inefficiency. This is because initial hypotheses about the structure of
the input are insufficiently constrained at the level that is constructed first. |
discuss some techniques that are generally applied to remedy this shortcoming
and argue that these are largely unworkable because they do not address the
problem head-on.

In the second part of the paper I argue that what is required to make GB-
parsing feasible is a shift from constraints on representations to constraints on
derivations.] reinterpret a few constraints on representation as constraints on
derivation and demonstrate how this approach drastically reduces the vast
search space associated. with the siandard formulation of the GB parsing
problem.

1 Problems in computational modelling of GB-theory
1.1 Introduction

Of many informal proposals for GB-based parsers that have been put forward
it is not clear what the relation is between the parser and the grammar that it
is supposed 1o implement (see e.g. Abney 1986, Berwick 1987, Berwick &
Weinberg 1985, Kashket 1987). Some of these parsers do not even embody all
the knowledge characterized by the grammar: for instance, because they have
no way of characterizing LF-representations. Although I think that building
such toy parsers can give us some insight into the possibilities opened up by
principle-based systems, they are not generally to be considered parsers for GB
theary.

370 UCL Working Papers in Linguistics 3

In this paper I will be concerned with what might (perhaps misleadingly)
be dubbed “"logic-based” approaches 10 GB-based parsing. Work in this area
tends to be aimed at providing faithful implementations of current
transformational grammars, often facing efficiency problems head-on, as we
will see. 1 will limit myself here to a discussion of just three examples of this
line of enquiry. First, 1 briefly discuss the work of Kolb & Thiersch (1990),
Johnson (1989), and Stabler (1990a,1990b). The aim of this overview is to
sketch the key computational problems encountered in faithfully implementing
a multi-level principle-based grammar.

1.2 Kolb & Thiersch 1990: Polystratal vs. monostratal GB-parsing

Kolb & Thiersch (1990) discuss a major obstacle in designing a feasible
parsing strategy for a multi-level theory like GB. When starting a parse, all one
has 1o work on is the input string, roughly corresponding to Phonetic Form. But
the only interface to the lexicon is located at D-Structure. This means,
according to Kolb & Thiersch, that if one were to take the theory literally there
is exactly one parsing strategy that the theory allows: one can generate well-
formed strings starting at D-Structure until it produces one that matches the
input. The disadvantages of such a generate-and test procedure are obvious: it
is incredibly inefficient and produces a halting problem if the input is
ungrammatical (because there are infinitely many possible D-structures).

Kolb & Thiersch then point out a much less obviously intractable strategy.
The idea is to allow access to the lexicon at PF, using the lexical information
on subcategorization and selection. In addition, PF would be allowed access to
the X'-module. Note that this step implies the linguistically relevant decision
that X’-theory applies not only at D-Structure. In this way one could generate
all structures that are compatible with X'-theory and properties of lexical items,
using modules at other levels to filter the bad ones out. This strategy introduces
a new intermediate level of representation, call it ?-Structure, consisting of a
labelled bracketing possibly including empty categories, which is the source of
a new halling problem. The point is that ?-Structure may contain empty
categories, but the modules constraining the occurrence of empty categories are
not available at this level. The authors point out that ad hoc restrictions do not
help very much. For instance, if one allows gaps in argument positions only,
the result is still an intractable number of possibilities. With Chomsky-
adjunction allowed at any bar-level, but X'-theory restricted to binary
branching, one gets more than 35000 different ?-structures for the simple
German subordinate clause ...dass der Karl den Hund schlug ("...that Karl beat
the dog”). Kolb & Thiersch conclude from this:

"Bad structures must be kept from being generated in the first place.
But the generation of a faulty structure is only preventable, if all

Hans van de Koot 371

relevant conditions are checked as soon as possible during structure
building, i.e. they must be reinterpreted as conditions on structure
assignment.

Aside from GB-theory, the equivalence between the declarative
and the procedural view on structural conditions is, for all practical
purposes, a straightforward fact. What complicates matiers in our
case, however, is that in the standard formulation of GB-theory the
relevant conditions don’t refer 1o the same levels, i.e. structures.
Hence, a procedural reinterpretation of the modules alone isn't
enough. The interconnection of the levels, and their contribution 10
the grammatical well-formedness of a sentence, also have to be
captured in an incremental way."

1t should not be difficult to guess what Kolb & Thiersch’s next step is. They
first observe that it is to date a matter of debate whether the mappings to derive
S-Structure from D-Structure and LF from S-Structure are truly derivational,
i.e. if there exists a mapping which is itself subject to certain constrainis (e.g.
subjacency or the ECP), where the constraints are too weak to define the levels
by themselves, or if the levels are in fact constituted by sets of constraints. On
the laner view, the constraints do not apply to the mapping itself but only to
its output. Kolb & Thiersch consider the more declarative view of the mapping
more congenial to parsing and, there being no conclusive evidence either way,
they dismiss the derivational view. This sets the scene for a rather obvious
second step: they collapse the theory into a single “annotated S-structure”,
which contains all the information of the original levels. Kolb & Thiersch then
observe that this is a pseudo-alternative, since in a canonical S-structure all D-
structure properties are trivially represented, except for the fact that every
argument must be associated with exactly one 8-position (the 6-Criterion). One
could, however, reformulate the 8-Criterion so that it holds at S-Structure, The
level of LF could similarly be compiled into S-Structure, leaving us with a
monostratal variant of the original polystratal theory.

While Kolb & Thiersch approach 1o GB-parsing is very much a common
sense one, the kind of grammar compilation that they advocate should come
with a guarantee that it is meaning preserving. It is in this respect that their
proposal is clearly lacking. This lack of precision is all the more worrying, as
the only researcher in the field who has tried to restructure GB-theory into a
mono-stratal variant and prove logical equivalence has failed to do so (Stabler,
p.c.).

372 UCL Working Papers in Linguistics 3
1.3 The PAD parsers

13.1 Parsing as Deduction Johnson (1989) puts forward the “Parsing as
Deduction” hypothesis: the human language processor uses its knowledge of a
language to obtain knowiedge of the utterances of that language in the same
way that a theorem prover uses axioms to deduce their consequences. As
Johnson points out, this hypothesis is "admittedly schematic, constituting more
an outline for research than a hypothesis for direct empirical confirmation, and
is intended to be construed as a refinement, rather than a rejection, of other
currently proposed processing models" (p.106).

Johnson’s hypothesis is not new, as he himself intimates by referring to
Pereira and Warren's (1983) paper “Parsing as Deduction". There is, however,
one aspect of the Parsing as Deduction (PAD) hypothesis that deserves special
attention:

"Viewing parsers as highly specialized theorem provers namrally
leads one to distinguish the knowledge of language used by the
parser (i.e. the hypotheses and inference rules) from the manner in
which this knowledge is put to use (i.e. the inference control
strategy which directs the application of the inference rules).”
(pp.106-107)

In other words, it allows us 10 experiment with the inference control strategy,
while keeping the grammar constant. Most of Johnson's paper is concerned
with exactly this aspect of his hypothesis and I will return to it below.

A second point Johnson addresses, and which he considers "one of the
major conceptual shifts embodied in the deductive approach" (p.107), is the
tendency for deductive systems to move away from representation-oriented
models of processing to knowledge-oriented models. To see what he has in
mind, recall that GB theory posits four levels of representation: D-Structure, S-
Structure, PF (phonetic form) and LF (logical form). A representation-oriented
parser would construct explicit representations for each of these four levels. A
knowledge-based parser, by contrast, need not necessarily build all these
representations. The point is simply, says Johnson, that the use of knowledge
of a particular level of representation does not entail the explicit construction
of that representation. He demonstrates this by exhibiting a PAD parser which
uses knowledge of D-Structure in the parsing process, yet avoids the explicit
construction of this level of representation. We will see later on how this issue
is connected with grammar compilation'.

'It is a common practice o translate (or compile) the grammar 1o be used into a form
that speeds up the parsing process.

Hans van de Koot 373

13.2 The logical structure of a PAD parser According to the PAD
Hypothesis, a parser is just a special purpose inference procedure computing
over the theory of Universal Grammar. “To construct a deductive parser for GB
one builds a specialized theorem prover for GB theory, provides it with
parameter settings and a lexicon as hypotheses, and uses it to derive the
consequences of these hypotheses that describe the uuterances of interest”
(p.115).

A PAD parser is constructed using a Hom-clause theorem prover (a Prolog
interpreter). The theorem prover is provided with three sets of clauses: (i) an
axiomatization of the theory of Universal Grammar, (ii) the parameter values
for the language to be parsed, and (iii) a lexicon. Ideally the axiomatization
reflects the internal organization of the principles of the grammar (here GB).
In fact Johnson's axiomatization, to the extent that he discusses it, does not
always meet this desideratum.

133 Control strategies Johnson's first parser PAD1 has all the bad
characteristics of a blind generate-and-test procedure?. The way it goes about
parsing a sentence is like this. First, it generates all D-structures that satisfy X'-
theory and filters all those that fail to satisfy -theory®. It then computes all
corresponding S-structures using move o. and removes all S-structures that fail
to satisfy the Case Filter. It is not until this point that it determines if the
terminal string of the S-structure is identical to the input string. Clearly, the
PADI parser is incredibly inefficient and it should not be very difficult to do
better, as indeed it is not.

PAD?2 uses extensive co-routining between the different modules of the
grammar. It does this by checking each existing node for well-formedness with
respect to the principles of grammar and by verifying that the terminal string
of the partially constructed S-structure matches the input string before it creates
any additional structure. PAD2 is textually identical to PADI, but achieves its
improved performance through a variant of the freeze predicate of Prolog Il.
The control strategy used in PAD2 allows inferences for certain predicates to
be delayed until specified arguments to these predicates are (partially)
instantiated. When some other application of an inference rule instantiates such
an argument, the current sequence of inferences is suspended and the delayed

3pAD] uses the SLD inference control strategy of Prolog. In combination with
Johnson's (very straightforward) axiomatization, this produces a simple-minded gencrate-
and-test parser.

3f X’-theory admits infinitely many D-structures, then the resulting generate-and-test
procedure is not guaranteed to terminate on ungrammatical input. For this reason, Johnson
uses a modified version of X'-theory in his PAD1 parser that allows only finitcly many
D-structures.

374 UCL Working Papers in Linguistics 3

inferences take precedence. Johnson describes the effects of this control stmaegy
as follows:

“Inferences using the X°, 6, Case, Move a and LF-movement
principles are immediately delayed since the relevant structures are
uvninstantiated. The "phonology” principle (a simple recursive tree-
walking predicate that collects terminal items) is not delayed, so the
parser begins performing inferences associated with it. These
instantiate the top node of the S-structure, so the delayed inferences
from the Case Filter, Move o and LF-movement are performed. The
inferences associated with Move a result in the instantiation of the top
node(s) of the D-structure, and hence the delayed inferences associated
with the X' and O principles are also performed. Only after all of the
principles have applied to the S-structure node instantated by the
"phonology” relation and the comesponding D-structure node(s)
instantiated by Move « are any further inferences associated with the
“phonology" relation performed, causing the instantiation of further S-
structure nodes and the repetition of the cycle of activation and
delaying.”

(pp-119-120)

PAD2, like PAD], is still top-down and left-to-right. But unlike PAD], it builds
D-structure, S-structure, and LF representations simultaneously.

134 Using knowledge vs. constructing representations Most work in
computational linguistics tacitly assumes that a parser only implements a grammar
if it builds all the representations specified by that grammar. As Johnson correctly
points out, this is by no means a logically necessary position. To some extent, the
point he raises is quite uncontroversial, as he acknowledges, since many standard
parsing algorithms do not explicitly construct any syntactic representation at all.
In fact, the cubic time complexity of the Earley algorithm relies on this. Some
context-free strings are O(e")-ways ambiguous and hence no parser that had to
explicitly construct all the possible syntactic structures for such a string could run
in cubic time.

As it tums out in the casc of the PAD parsers, some amount of grammar
compilation leads to an axiomatization of UG that makes it possible to avoid the
explicit construction of D-Structure and S-Structure. Johnson only gives an
informal account of how this result is achieved. The first step is to observe that
several predicates of the original axiomatization perform exactly the same
recursive traversal of the same stucture. Using the Unfold/Fold program
transformation technique®, it is possible to replace the X', 0, move a, Case and
Phonology predicates by a single predicate "p“ that holds of exactly the D-
structure, S-structure, PF triples admitied by the conjuncton of the original

“The Unfold/Fold transformation produces a logically equivalent program.

Hans van de Koot 373

principles. This transformation maps PAD?2 into the more efficient PAD3, which
shows a drastic reduction in the amount of trec-walking that has to be done.
Because it replaces the original axiomatization with a provably equivalent one, the
PAD3 parser provably infers the same knowledge of language as the PAD1 and
PAD?2 parsers. Collapsing the above mentioned principles into the predicate “"p”
also has the effect that PAD3 exhibits the co-routining behaviour of PAD2, even
when used with the standard SLD inference control strategy of Prolog.

PADA4 is quite like PAD3, cxcept that it does not construct D-structures. As
Johnson points out, no predicate ever uses the D-swucture value retumned by the
predicate “p", not even “p" in recursive calls 10 itself, Therefore, "p” can be
replaced by the predicate "p1", which is like "p” except that it does not have a D-
structure argument.

PADS is constructed from PAD2 by applying the Unfold/Fold transformation
to all principles of grammar simultancously. This yields an axiomatization in
which both D-structure and S-structure values are always ignored and hence
deletable. Thus PADS only constructs an LF representation for its input.

1.3.5 Discussion Although Johnson's work seems quite promising at first sight,
it becomes much less so when one considers his claims in some more detail. 1
have already commented upon the triviality of some aspects of the PAD
hypothesis. Here 1 will focus on a prime feature of his approach: the shift from
representation-oriented models to knowledge-oriented models.

To some extent the application of the Unfold/Fold transformation to a logic
program is a standard programming technique that sophisticated programmers
often use without being aware of. However, it is quite a different matter to use this
technique to improve the efficiency of a large and possibly complicated logic
program. In the case of Johnson’s PAD parsers the success of the transformation
would seem to be a .mather accidental by-product of the details of the
implementation. It would seem therefore that the Unfold/Fold rransformation is not
the sort of general method that is going 10 make a GB-parser efficient. This is not
to say that the opposition between representation-oriented and knowledge-oriented
models is not, in itself, an interesting onc. Johnson's formalization of (pant of)
GB-theory seems 1o be quite faithful and, as the Unfold/Fold transformation is
meaning-preserving, the same is true of the PAD parsers that do not build all
representational levels explicitly.

In this context it should also be stressed that the PAD parsers only parse a
very restricted fragment of English, which does not even include an account of
wh-movement. Johnson claims that this should not worry us to much, as “the
techniques used 10 construct these parsers are quite general, and there appears to
be no reason that they would not extend to a more substantial fragment”. My
impression is that this is a bit 100 optimistic. WhA-movement complicates the
parsing problem considerably, because it dramatically increases the parser’s search
space. As a result of such movements, the leftmost constituent in an S-structure
can be located arbitrarily deep and to the right in its corresponding D-structure.
This in combination with the fact that lexical insertion and X'-theory are enforced

376 UCL Working Papers in Linguistics 3

at D-Structure gives rise to severe thrashing bchaviour'. It is by no means clear
if and how transformation techniques could come to the rescue here. See also
section 1.4.1 below.

On the positive side of things, Johnson's approach highlights the relevance of
experimenting with various control strategies. It is quite clear, even from his rather
sketchy presentation, that co-routining between the different modules of the
grammar eliminates a substantial portion of wasteful search.

1.4 Stabler (1990a,b): reformulating the GB parsing problem

1.4.1 Identifying the major sources of intractability Formalizing a GB grammar
in first-order logic is not too difficult, as the examples below (from Stabler 1590b)
illustrate. For instance, the well-foomedness of D-Structure, S-Structure, and
Logical Form can be expressed as follows:

(1) (v d_struciure(T) < x_bar() A lexical_insertion(T) A 8-marking(T)
(2) (VT) s_structure(T) & case_theory(T)
3) (VYD If_structure(T) & ecp(T) A binding_theory(T)

We also have to define under what conditions two levels of representations may
be taken to be related by zero or more applications of move c. Following the
standard definition of this transformational rule, move is either a substitution or
an adjunction. This is expressed in (4). The logical sentence (5) gives the mansitive
closure of the move_a relation move_o®.

(4) (VT,T,) move_a(T,T,) & substitue(T,,T,) v adjoin(T,T,)
(5) (VT,.T,) move_a*T.T,) & T, =T, v (3BT move_a(T,.T3) A
move_0*(T,,T,)))

Now suppose we think of the parsing problem as providing a constructive proof,
given an input pf, for (6):

(6) ADSSS.LF d_structure(DS) A
move_a*(DS,S5) A
s_structure(SS) A
If_ movement*(SS.LF) A
yield(SS pf).

The predicate yield simply gives the sequence of leaves of SS (i.c. we abstract
away from the phonological component). As we discussed earlier, simple methods
(gencrate-and-test, backtracking) will be ridiculously inefficient. As Stabler
(1950b) points out the backtracking procedures that use extensive co-routining

SRepeatedly considering and rejecting the same partial, incorrect solutions.

Hans van de Koot 377

(such as Johnson's 1988 PAD2-5 parsers) run into two soris of difficulties: (i) as
a result of the application of move a, the leftmost constituent in an S-structure can
be located arbitrarily deep and right in the corresponding D-structure, (i) lexical
insertion and X'-theory are enforced at D-Swucture®. He explains:

“The problem is that the input swing is the yield (PF) of an S-
structure, but basic X-bar consmaints and lexically specified
information about the elements of the string cannot be used to restrict
the search for a proof until an S-structure (at least partially formulated)
has been related by some particular number of movement relations 10
a D-structure (at least partially formulated) containing those elements.
Since we do not know in advance how many movements may have
occurred or where in the D-structure the leftmost S-structure
constituent might have originated, building the leftmost branches or
any other particular part of the D-structure first will not gencrally
suffice to specify the lefimost constituent in the comesponding S-
structures. Without this specification, the search will be wasteful,
repeatedly considering and rejecting bad analyses.”

(p.5)

Stabler (1990b) gives several examples of how the grammar itself reveals that a
great deal of scarch done by e.g. the simple generate-and-test procedure is useless.
He exhibits a number of principles of induction, some of which allow one to
import certain constraints on D-Structure into the level of S-Structure and to add
constraints on the mappings between levels, Perhaps paradoxically, imposing extra
constraints on the parsing problem helps to reduce the search space. 1 say
paradoxically, because the vast search space of the GB parsing problem is a direct
result of parsing with a se of very general constraints. As we will see, however,
the point of Stabler's method is to add the new constraints 1o the parsing problem
jtself (i.e. to (6) above) rather than to thc grammar. If the new constraints are
relatively casy to evaluate, then a sclective backwacking approach which
interleaves the old and the new constraints to maximum advantage can lead to a
considerable reduction in search space.

1.4.2 Using the grammar to reformulate the parsing problem Stabler uses two
inductive principles from which he derives several new constraints that help to0
alleviate the parsing problem. Let us consider each of these in tumn. The first of
these principles says that for any property ¢, if ¢ is preserved by one movement,
then it is preserved by any number of movements. More formally, we have (7)-
(10), where movex® is the wansitive closure of movea:

¢Stabler makes the conservative assumption that D-Structure cannot be dispensed with.

378 UCL Working Papers in Linguistics 3

) (VTy) d_structure(T,) — $(T,)
®) VToT) (T — (movea(T,.T,) —= &(T,)
t)] ((VToT)) $(T,) — (movea(T,.T;) = &(T))) =

((VToT) (T} = (movea*(T,,T) = §(T)]

(10) (VTo.T) d_structure(T,) = 6(To) = (movea®(T,,) — &)

Suppose ¢ is lexical_insertion, then (7) follows immediately. If the only
movements we consider are substitution and adjunction of maximal projection,
then movement will never change anything inside a word and (8) holds as well.
Premise (9) is a straightforward principle of induction, quite analogous to the
principles that license inductive arguments in mathematics. The conclusion (10)
clearly follows from the premises. So we conclude that lexical insertion conditions
hold at S-Structure (on the assumptions about movement just mentioned). There
are quite a few D-Structure propenies for which we could construct a similar
argument. Following standard linguistic terminology, Stabler calls principles like
these structure preserving principles.

Things become somewhat more complicated if one wants to demonstrate that
certain relations hold between levels. Stabler mentions the following example. If
an NP with certain features occurs ar D-structure, it must occur in every
corresponding S-structure, and, conversely, if a nonempty NP node with cerain
features occurs at S-structure, then an NP node with those features occurs in every
corresponding D-structure. This relation of having XPs in common could be
defined with an axiom like the following:

(48)) (VT,.T) same_xps(¥T,T) & (YXP)occurs(XP.To) — occurs(XP.T))
The corresponding facts we need would look like (12):
(12) (VT,.T) movea™(T,,T) = same_xps(T,.T)

Establishing this result is not as straightforward as one might think. The trouble
is that the mere fact that wrees related by movea always stand in relation y does
not entail that trees related by movea® stand in relation . This can easily be
demonstrated. Suppose v is the relation that holds between two trees just in case
the secand has exactly one more trace than the first. This relation holds whenever
movea holds, but it does not necessarily hold whenever movea® holds. Stabler
therefore uses a somewhat complex argument to deliver the required resuls:

(13) YD) wT,D

(14) (VTo.T,.T) (W(To0.T)) A movea(T,,T)) = y(To.T)

(15) (VT T,.T) (W(To.To) A ((W(ToT)) A movea(T,.T)) = W(T,TH] =
((VT,.T) movea*(Ty,T1)) = YT, 1))

(16) (VTo.T) movea*(T,T)) - W7,

Hans van de Koot 379

In other words, if a relation v is reflexive and is preserved by movec, then it is
preserved by movea*. He dubs principles of this form relation preserving
principles. Let us now consider how facts derived with the help of the induction
principles can be put to use.

1.4.3 Gaining efficiency by adding lemmas to the parsing problem Stabler
points out that, in principle at least, there are three ways of putting the inductive
Principles to use and each of these implics a different view of the runtime
grammar the parser employs.

First, we could go on parsing with the grammar that we had and try to deduce
valuable restrictions on-line. This is not a feasible approach, however, for a
number of reasons. There are a lot of properties and relations that are preserved
by movements, but not all of these are equally uscful. We are locking for cases
that have relatively few provable instances. Figuring out which properies and
relations are useful is not an easy matter. A second problem that is pechaps even
more distressing is that there are infinitely many principles of induction and they
can be arbitrarily complex. This means that even if we know in advance which
structure preserving principle we want to establish, a proof from the grammar may
be very hard to find.

This leads us to consider a second option: we could find interesting cases of
structure preserving principles off-line and add them as lemmas to the grammar.
Of course, since they are logical consequences of the grammar, these additions
will preserve logical equivalence. According to Stabler, there are some problems
with this approach. Lemma generation inroduces a lot of redundancy and as a
result the search space will become larger rather than smaller. Also there will be
many ways 1o prove the same result, although some of the new proofs will be
shorier than any of those previously available. Stabler observes that lemma
generation method may be of psychological interest if language is richly redundant
in the way that Minsky and others believe most human reasoning is, but he finally
settles on a third option that offers more hope of a reduction in search space.

The third possibility is to add the lemmas to the parsing problem. This will
transform the original parsing problem (6) into (17) below:

a7n aADSSS,LF d_structure(DS) A
move_a*(DS.SS) A
$_structure(SS) A
Iif movement*(S5.LF) A
yield(SS.pf) A
0)(SS) A ... A (S A
Y(DS.SS) A ... AYLDSSS) A
Yin(SSLF) A .. A WASSLF) A.

What makes this strategy effective is that selective backtracking will allow us to
interleave the steps of each subproblem to obtain the maximum advantage. The
idea is to test partial evaluations of the original problem by interleaving them with
evaluation of the lemmas. In this way incorrect solutions can be discovered at a

380 UCL Working Papers in Linguistics 3

very early stage. How cheap the reduction in search will be depends on how easy
to evaluate the lemmas are. Stabler points out that problem solving methods of this
kind are sometimes calied "relaxation” methods in loose analogy with the better
known iterative probabilistic relaxation methods. The lemmas that are added to the
original problem can be regarded as defining relaxed, approximate solutions which
can be found and then tesied against the original constraints. The technique is
similar in motivation to the consistency methods of Mackworth (1977.1987) and
others, but it differs from those in that the original constraints of the problem
remain unchanged.

1.4.4 Discussion Of the approaches 1o GB parsing that I have discussed Stabler’s
is the most sophisticated, both in terms of logical precision and linguistic
accuracy. In my view, this makes his work particularly auractive. Still, there are
some questions that deserve our attention. It would seem that, while addition of
lemmas to the parsing problem rather than 10 the grammar avoids introducing
redundancy in the grammar, it does give rise to redundancy in the proofs. This is
because the lemmas that are evaluated for S-Structure are reevaluated for D-
Structure. There may be ways of getting rid of such redundancies by climinating
the D-Structure constraints that constitute the source for the lemmas that one
deduces. This would make Stabler’s proposal much closer in spirit to Kolb &
Thiersch's. Indeed, one might well ask whether it would not be more sensible to
include the lemmas as S-Structure constraints in the grammar, while at the same
time removing the D-Structure constraints from which they were derived. This
would result in a greatly impoverished D-Structure. On this view it is largely an
empirical matier whether or not D-structure can be eliminated from the grammar
altogether. It might just be the case that certain linguistically well-motivated D-
Structure constraints cannot be reformulated so as to hold at any level other than
D-Structure. .

1.5 Conclusion

I have discussed three rather different awtempts 10 address the problem of
developing a feasible GB-parser. One important observation about these logic-
based approaches is that there seems to be a communis opinio what it is about GB-
theory that makes its parsing problem exceptionally hard. GB-theory postulates
several levels of representation, each of which is associated with a number of
constraints, which gives rise 1o potential undecidability and may cause gross
inefficiency. This is because initial hypotheses about the structure of the input are
insufficiently constrained at the level that is constructed first. Even though the
three approaches ! have discussed differ in non-trivial ways, there is a key
property that they share: cach proposal is an atempt to enrich the set of
conswrainis that can be brought 1o bear on the initial hypothesis about the input.
This is achieved in different ways. Kolb & Thiersh “collapse” the theory into one
level, Johnson's main weapon is co-routining, and Stabler uses the lemmas he
derives from his inductive proofs 1o relax the parsing problem. This relaxation

Hans van de Koot 381

technique has the effect of bringing D-Structure and LF constraints to bear on S-
Structure.

Given that the three logic-based approaches are similar in the respects just
mentioned, one might well ask if this similarity is accidental or a consequence of
the unavailability of alternatives.

The following section is an atwempt on my part 10 show that there are
alternative ways of reducing the search space of the GB parsing problem. The idea
that I will explore emphasizes the importance of constraining the mapping between
levels of representation and accords a secondary role to grammar compilation
aimed at enriching the set of constraints at each of the levels of representation.
The proposals discussed above share the characteristic that they use the constraints
that govern the form of chains of movement as filters. This is by no means
necessary or even desirable, but it is a natural consequence of taking a declarative
view of the rule move . Taking the filters approach to its logical extreme has the
obvious drawback that one is left without any means of reducing the search space
associated with the move_a* relation, except through varying the inference control
strategy. It therefore seems worthwhile to explore the alternative, derivational view
of the rule move c. On this view of the rule, constraints on the form of chains
should be interpreted as constraints on derivarions, wherever this is possible.

2 An Informed Generate-and-Test Method
2.1 Decidability at D-Structure

The suggestion and informal result that I discuss immediately below are at once
boringly trivial and very useful. Let us rerumn o the naive generate-and-test
method and the cause of -its decidability problem. In a nuishell what is going
wrong is that the parser can keep on guessing D-structures for ungrammatical
inputs ad nauseam. As a matter of fact, onc might have to wait a very long time
until it guessed the correct D-structure for a grammatical input, which is why
nobody would ever seriously consider this method anyway.

The assumption in the literature 1 have discussed is that the only way of
testing D-structures against the input string is at PF. Given this assumption and
assuming co-routining is a clever idea by anyone’s book, there are exactly two
options left. One is generate-and-test, which gives rise to decidability problems,
no matter how cleverly one co-routines the construction of DS, SS, and PF. The
other is the bottom-up approach, which can be achieved by freezing the
appropriate predicates at the appropriate levels. The bottom-up approach in its
“pure” form (i.c. without grammar compilation of any kind) gives decidability
problems as well. Here the problem is that one can keep on guessing S-structures
for ungrammatical inputs by postulating more and more traces at S-structure. We
have seen what the standard lines of attack are. Either one wies to get rid of one
or more levels of representation by extensive compilation, or one uses slightly less
drastic measures, which still have the effect, however, of bringing D-Structure
and/or LF constraints 1o bear on S-Structure or PF. While such strategies may very

382 UCL Working Papers in Linguistics 3

well tum out to be unavoidable, it seems worthwhile to investigaie possibilities
which leave the grammar as unaffected as possible.

One such possibility lies in dropping the assumption that the input string is
only available at PF". One might well ask what motivates this assumption in the
first place. Although it is cenainly true that lexical items may be added and
deleted in the course of a derivation, deletion and insertion rules certainly do not
affect the mappings between levels completely randomly. Deletion takes place
upto recoverability and insertion is restricted to designated elements. Let us
assume, here without argument, that these discrepancies between D-structures and
PFs can be dealt with one way or another. It is now of course entirely
straightforward how we can use the input 10 constrain the generate-and-test method
in such a way as to eliminate the undecidability that rendered the blind generate-
and-test method useless.

The argument takes on the following general form: given an input sting o,
there exists a maximal DS &", such that if there is no valid derivation for ¢ from
8, then there is no valid derivation for o from any DS®. Let us now consider the
argument in some more detail. Given an input string, what is it that determines the
upper bound on the size of its DS? Clearly the upper bound on the size of a DS
is determined by the number of verbs in the input. Simply put, any main verb will
license the projection of one VP and its associated functional projections (i.e. IP
and CP). Since functional projections may have empty heads (possibly even at
DS), we seem to be in for wouble. This is not a real problem, however, because
functional projections only recurse through lexical projections. As a result, the
number of functional projections that could be hypothesized for a given input is
linear in the number of lexical projections that are hypothesized, and all is well.
All we really need to establish, then, is whether the number of empty lexical heads
that could be hypothesized for any given input is always finite. It is here that
recoverability comes 10 the rescue: the occurrence of null heads is subject to very
stringent restrictions. Null heads need to be locally licensed in one way or another.

Notice that we need not worry at all about the possibitity of having to
hypothesize empty NPs at D-Structure. Why is that? First, there are no traces at
D-Structure. Second, there can be empty pronominal elements, like PRO and pro,
at D-Suucture, but like any other NP such empty pronominals must satisfy the 8-
Criterion. This has the immediate consequence that their number is linearly related
to the number of selecting heads, and all is well again.

Rewming now to the main line of argument, it seems fairly straightforward
to maintain the position that the number of verbs in an input swing o will
determine an upper bound 8 on the size of DS 8. This is because the number of

"We continue 10 abstract from phonological processes, so that a PF-representation is
just the sequence of leaves of SS.

SWhere the size of a DS may be simply expressed in terms of the number of nodes
it contains.

*This is not quite accurate. since there may be more than one maximat DS.

Hans van de Koot 383

verbs in the input (roughly) determines the number of dependent projections. As
a result, we know what size the tree has 10 have for the input to be able to satisfy
the ©-Criterion. It follows that, if there is no valid derivation for a swring ¢ from
any DS of size 8 or less, then therc is no valid derivation for ¢ at all. We
therefore (informally) conclude that the parsing problem for this informed version
of generate-and-test is not undecidable “at D-Stucture™. This is not to say that it
could not be undecidable for other reasons.

2.2 Decidability at S-Structure

2.2.1 The mapping problem We have established that the parsing problem for cur
generate-and-test procedure is not undecidable because of properties of D-
Structure, but can we establish a more general result? There are good reasons to
assume that, ualess special restrictions are imposed on move «, the parsing
problem for a GB-based parser is not generally going to be decidable. There is a
very simple reason for this: multiple adjunction. If it is always possible to wy one
more adjunction, then clearly the parser is never going to rcport failure on
ungrammatical input. This problem will arise regardless of whether one is using
a generate-and-test or a bottom-up procedure. It is not easy to see how one can
remove this shoricoming in a principled way. The problem does not just arise in
the mapping from D-Structure to S-Structure, but in the mapping from S-Structure
to LF as well. It is very unlikely that adjunction can be eliminated from the
theory, while preserving logical equivalence. So we will have to find a way to get
rid of undesirable multiple adjunctions. Note that we do not want to rule out the
possibility of multiple adjunction altogether: we do want to allow different
categories to adjoin to the same projection. Thus, the structure in (18) is well-
formed: .

(18) {to whom), did you (t,'[wonder [what; to [t,'(t’[give ¢ t]1]]]]

It seems to me that there are two ways in which one could achieve the desired
result. The first of these is simple: state the move_c* relation in such a way that
adjunction of a given node cannot cannot be applied twice to any node'®. A
second approach one could explore is whether it is possible to constrain the rule
move a in such a way that the move_a* relation yields all and only the correct
outputs without backiracking. It seems likely that such a solution would also be
very desirable from the point of view of efficiency. It is not at all obvious,
however, that this can be done. It cerminly cannot be done without either
modifying the theory or extensive grammar compilation, as I will show in what
follows. It is important to bear in mind that we can always resort 1o the stipulation

1®Note that it is not enough 10 forbid recursion of move o on any node, as we also
want to forbid A to readjoin to B cven if some other node C has adjoined to B in the
mean time.

384 UCL Working Papers in Linguistics 3

that adjunction of a given node cannot occur twice to any node. Constraining the
rule move @ to less than full determinism will still greatly simplify the GB parsing
problem. We investigate the reasons for this nexi.

2.2.2 Move a as a source of intractability Consider once more the general form
of the GB parsing problem:

(19) ADSSSLF d_structure(DS) A
move_a*(DS,S5) A
$_structure(SS) A
if_movement*(SS.LF) A
yield(SS.pf).

If we abstract away from the possibility of co-routining for the time being, it is
easy to see that the move_o* relation will be the source of massive backtracking.
move « is a "blind" rule. Its formulation does not embody any constraints at all,
not even constraints that determine what is a possible landing site. As a direct
result of this, the move_a* relation is associated with a vast search space. Of the
constraints that filier out illicit movements some apply at S-Structure (e.g.
Subjacency) and others at LF (e.g. ECP). The problem is exacerbated by the sheer
number of potential landing sites in any tree of a reasonable size. Suppose we
have a case of wh-movement in a tree with n nodes. Suppose further more that we
anly consider potential adjunction sites and disregard the possibility of multiple
adjunction 10 the same node. Then, if we apply move a only once, there will be
roughly n-s potential landing sites (where s is the number of nodes in the moved
constituent). we apply move o twice to the same node, there are (n-s)(n-(s+1)
possible derivations, and so on. In general, for a tree of size n (where n is the
number of nodes, there are roughly

n n!
pX
=0 (n-k)!

possible derivations for any node in the tree, which is a fairly astronomical
number for a tree of reasonable size'.

"To get at Jeast a vague idea of how rapidly this function grows, consider the table
below:

n f(n)

10 9.86 10°
15 3.55 10?
20 6.61 10"

25 4.2} 10*

Hans van de Koot 385

In practice, we can alleviate the search problem considerably by co-routining
the construction of DS, SS and LF. However, while the use of such techniques is
certainly not without merit, it leaves the basic problem unaffected: it does not
reduce the search space associated with the move_o* relation itself. To achicve
that, we would have to find ways of constraining the application of move . rather
than its output.

Let me give a simple example. It does not scerrPvery difficult to redefine the
move_a* relation in such a way that a maxima) projection can only be adjoined
to a maximal projection. More generally, we could require that a node with bar
level k can only adjoin to a node with bar fevel k. Just this simple modification
will bring down n in the formula above by a factor 3, by no means 2 small
reduction in search space, as the reduction is within the scope of the factorial'.

In short, it seems worthwhile to explore the possibility of reducing the search
space introduced by the move_a* rtelation, as this will cenainly reduce the
complexity of the overall parsing problem. But how should we go about doing
this? One possibility is to compile chain-related constraints holding at S-Structure
and LF into the move_a* telation. While this may seem quite auractive from a
parsing point of view, it certainly runs counter 1o received wisdom in the linguistic
community. This need not in itself be a problem. There are no a priori reasons 10
expect a very close relationship between the grammatical theory and its realization
in a parser’, This is not to say, however, that we waould not prefer the relation
between a grammar and its implementation to be as simple as possible. In light of
this, the contrast between the declarative and derivational view of move & takes
on a new dimension. If one takes a derivational view of move «, one is more
casily led to interpret a constraint like Subjacency as a condition on the
application of this rule than as a condition on its output. That is, one is more
inclined to view Subjacency as a constraint goveming the mapping bewween D-
Structure and S-Structure.than as a constraint holding at S-Structure. Even though
linguists currently working in the field of GB-theory are divided on this matter,
much of the theory is to a large extent open to cither interpretation. The
derivational view is in many ways more congenial to the approach 10 GB-parsing
that I will advocate here. This is because the derivational interpretation of move
« implies a natural division between chain-related constraints (i.e. constraints on
movement) and constraints on representation. My proposal singles out the chain-
related constraints as candidates for compilation into the move_o* relation.

¥yp other words. there is little reason for joy if n! is brought down to0 1/3(n!). Things
start 1o look a bit brighter if n! is reduced to (1/73n)!, as is the case here.

3] refer the interested reader 1o Marr (1982). Berwick & Weinberg (1984), van de
Koot (1990) and Ristad (1990) for cxiensive discussion of this important but often
neglected point.

386 UCL Working Papers in Linguistics 3

2.2.3 Constraining the DS-to-SS mapping The constaints govemning the
distribution of traces are doing two rather different jobs. On the one hand, traces
must satisfy cenain locality requirements (Subjacency and the ECP)™. Sentence
(20), for example, is a standard ECP violation:

(20) * John, seems, that it is certain [t, to win]

On the other hand, there are conditions that block so-called “improper” movement.
Consider (21) with the structure indicated:

2n * [John, [vp ¢ [vp scems [1, [Mary [yp 4, [vp saw ¢]111)))

This structure does not violate Subjacency or the ECP. All movement is strictly
local. Still, it is ill-formed. But how does the theory rule it out? The answer is that
the structure violates the Binding Theory. The trace immediately following saw
is an R-expression and therefore subject to condition C of the Binding Theory. By
condition C this trace must be A-free. It is A-bound by John, however.

Where do these principles apply in the grammar? Subjacency is standardly
assumed 1o hold at S-Structure. I is fairly easy to see, however, how it could be
reinterpreted as a condition on the mapping from D-Structure to S-Structure. From
our point of view this is a bonus, because it would allow us to constrain the
derivation from D-Structure to S-Strucwure by compiling Subjacency into the
move_a* predicate. Similar optimistic conclusions are probably not warranted in
the case of the Binding Theory or the ECP, which are both assumed to hold at LF.
But let us see how far we can get.

First, consider the ECP. Recall that the ECP, as formulated in Barriers, is
actually "supporied” by several processes, some of which (viz. those at LF) are
ordered with respect to tach cther:

(22) (i) move a
(ii) Y-marking (at SS, for non-adjunct traces output by (i))
(iii) wh-raising
(iv) free deletion of traces
v) Y-marking (at LF, for all maces not covered by (ii))

(vi) Y-checking (i.c. the ECP)

Intuitively, the thing to do would be to reformulate ¥-marking in such a way that
it would act as a constraint on derivation. That is, it would be nice if we could
compile y-marking into the move_a* relation. It is fairly easy 10 sec that this will
not help much, however. This is becausc not alf S-structure traces are subject to
¥-marking, only the non-adjunct waces are. This will still leave us with a subset

“As a matter of fact the ECP is usually Laken to consist of a locality requirement and
an identification requirement. The present discussion focusses on the locality requirements
that chain links must meet.

Hans van de Koot 387

of the move o mapping that is not constrained until LF. There are several ways
in which one might attempt to resolve this problem. Perhaps the most attractive
of these is to investigate the consequences of the conjecture that therc is no
adjunct-movement in the mapping from D-Structure to S-Structure at all. Instead,
one would have to assume that all chains of adjunct movement arc constructed at
LF. As noted in van de Koot (1990) the idea has some intuitive appeal, because
adjuncts are not 8-marked and as a result their position is not projected from the
lexicon. I will not investigate this possibility any further here.

What about the Binding Theory? First, observe that of the three binding
conditions only Condition C is needed to constrain the form of chains'’, The
standard way of formulating this condition is as in (23):

(23) An R-expression must be A-free up 1o the domain of its associated
operator

(23) suffices to rule out ill-formed sentences like (21) above. We understand (23)
as follows: an R-expression must be A-free in the domain of its operator if it has
one, otherwise it must be A-free throughout. There is good evidence that, if
Condition C holds, it must be stated at LF. Given the approach I have been
pushing in this section so far, this is a serious problem. It would be very
encouraging if there were a neat division between constraints on representations
and constraints on derivations. This is not what we find here, however. Although
we could perhaps reformulate move « in such a way that at cach successive siep
it observed Condition C, there is no way we could simultancously eliminate
Condition C at LF.

Brody's (1990) work on Case Theory and argumenthood would seem to offer
good prospects for resolving the tension just noted. This work is of a rather
fundamental nature and discussing it in great detail would cenainly take us too far
afield. I will therefore just sketch the problem he addresses and the implications
of the solution that he comes up with.

2.2.4 Chain uniformity In standard GB-theory there arc two notions of
“argument”: what is an argument at D-Structure is not always an argument at LF.
This is clearly a problem. How does it arise? First, it is clear that if D-Structure
exists, then the 9-Criterion should hold at this level: it is here that thematic
properties are determined. If we look at NP-movement, then we see that having
the 6-Criterion at D-Structure will simplify matters: at this level NP-movement has

Not every GB-linguist would agree with this. There has been a lot of discussion in
the literature as to whether traces of NP-movement are subject to Condition A or noL
There is some evidence 10 suggest that Condition A cannot capture the very strict locality
requirements on these traces, however, and that the ECP is required to do the job. On this
view, NP-traces would not be subject to Condition A at all. For a detailed discussion of
this problem, see Lasnik (1985) and Chomsky (1986).

388 UCL Working Papers in Linguistics 3

not yet moved the arguments from their ©-positions and therefore an optimally
simple -Criterion can be postulated:

(24) 0-Criterion (D-Structure)
Each argument is in a 8-position and
cach 8-position contains an argument

Here is the problem. If the 6-Criterion holds at D-Structure, then the heads of A’-
chains (i.e. elements like wh-phrases and quantifier/operator phrases) will have to
count as arguments for it, since these appear in 6-positions at this level. Given
standard assumptions, however, these elements are nor arguments at LF: the 8-role
assigned to them a1 D-Structure is taken up by the associated variable. Let me give
an example to make this clear. Example (25i) has D-structure (25ii) and LF-
representation (25iii):

(25) (i) who did John see
(ii) [cr [John <past> [y, see who]]]
(iii) [who, do+<past>; (John 4 [ve & [vp see)]])

By the 0-Criterion who in (25ii) will have to be an argument, as it occupies a (D-
Structure) 8-position. At LF, however, it is # that counts as an argument, i.c as a
referential category or R-expression'. The theta-role is not "inherited” by the wh-
phrase at the head of the chain. There are scveral reasons for this assumption, but
we will not go into them here.

Over the past couple of years several linguists have argucd that the -
Criterion does not just hold at D-Structure, but that it holds at LF as well. Indeed,
according to some, it only needs to be stated at LF. The principle would have the
following form at LF:

(26) O-Criterion (LF)
Each 6-position is (chain-)related to a unique argument and
each argument is (chain-)related to a unique ©-position

This version of the 8-Criterion is incompatible with a “strong” version of the
derivational view of move a, as will become clear shortly.

Brody argues (i) that the 6-Criterion holds only at D-Structure, (ii) that it
refers only to D-Structure arguments, and (iii) that (26) is incorrect. Thus, while
the notion of LF argument (i.e. R-expression) may be useful, it is not one that the
0-Criterion is concerned with.

The D-Structure 6-Criterion ensures a one-to-one mapping between ©-
positions and arguments simply by virue of the topology of syntactic trees: one

*The set of R-expression include noun phrases that are in some intuitive scnsc
potentially referential (e.g., John, the car, eic.) and variables, where we definc variable as
follows: a is a variable iff « is an cperator-bound trace.

Hans van de Koot 389

position can contain only one argument, one argument can only be in one position.
At LF, however, where 8-positions can be related to arguments through chains,
uniqueness does not follow, and if one drops the LF 0-Criterion, one would expect
10 see cases where a chain contains more than one LF-argument (R-expression).
Brody argues that such cases do in fact exist. As he points out, “the analysis of
the English adjectival complement constructions of the easy-to-please type is
another longstanding problem of GB-theory”. In this construction the matrix
subject is non-thematic as shown by (27i), but an argument can appear initasin
(27ii):

(vx)) i) it's casy (to please John]
(ii) John is easy (to please t]

The cooccurrence of an argument in the matrix subject position and of a gap in
the complement clause is non-accidental:

(28) @ * John is easy [to please Mary]
(ii) ok It's easy [t0 please t] (only with it as non-dummy)

In other words, the argument appears in the matrix subject position if and only if
the complement contains a related gap. Thus, the structure has all the properties
of movement. The fact that both the position of the gap and that of the moved
clement are A-positions makes the movement similar 10 NP-movement. On the
other hand, the gap is in the object position of a non-passivized transitive verb, the
movement does not obey the ECP (that is, assuming improper movement is
disallowed), and there is an intervening subject: all properties not normally found
with NP-movement. Chomsky (1977) pointed out that the construction exhibits all
major features of wh-movement and proposed an analysis of these facts that
involves empty operator movement:

(29) John is easy [Op, (to please)]

However, since Chomsky (1981), when the 8-Criterion and the assumption that
variables are arguments were introduced, the construction has been a real problem.
This is because both the mamix subject and the variable ¢ are arguments in
violation of the 8-Criterion, if this is construed as entailing a one-to-one mapping
between arguments and O-roles at LF. On Brody's view of the matter, this is not
a problem at all. It is in fact exacly what one expects o find, given that the -
Criterion holds at D-Structure only.

According to Brody the real problem with the easy-to-please construction is
created by the ban on improper movement: how is the mamix subject in (29)
related to the operator and the variable? As the subject occupies a non-6-position,
it must have moved there. But the only possible D-Structre position for the
subject is the gap in the complement clause which appears to be the launching site
for the empty operator. As Brody points out:

390 UCL Working Papers in Linguistics 3

"We have a rather curious and otherwise unattested peculiarity: an
argument materializing in a non-theta A-position with no proper D-
structure source. The argument must also somehow be connected to
the operator-variable chain if for no other reason than to ensure correct
interpretation. If we take this to be accomplished by some construal
rule, then we also have an otherwise unattested construal rule relating
an argument in a non-theta position to a thematic position.

But of course we have a rule with precisely these properties,
namely movement. So the problem appears to be locaied in the
assumption that improper movement is generally prohibited.”

(p4)

So Brody's next step is to drop the general ban on improper movement and to
derive (29) through movement, as in (30), where (30i) is the D-structure and (30ii)
is the derived S-structure:

(30) @) (g NP is easy [[» PRO to please John]]]
G1) [John, is easy [t, [PRO 10 please t]])

Of course, it must be ensured that improper movement derivations that need to be
excluded are ruled out. Consider again (21), which I repeat here as (31) for
convenience:

(€2)) * [John, [yvp 4, [vp seems [¢, [Mary [vp & [vp saw]}

It is essential for what follows that I first point out that for Brody any intermediate
trace in an A’-position can be an operator. Whether such a trace is in fact an
operator or not depends on whether the head that governs the trace licenses an
operator (i.e. whether the head selects an operator as a lexical property). This idea
may seem somewhat sange at first, but the examples below show the lexically
governed nature of this licensing:

(32) @) ok John is casy {Op [to please]]
(i) * John is feasible (Op {to please])
(iii) ok John is impossible [Op [to please]]
(iv) * John is not possible [Op [to please])

Crucially, the trace governed by seem in (31) is not licensed as an operator. Given
this, (31) could be straightforwardly ruled out by Condition C of the Binding
Theory, if the trace following saw is 1aken 10 be an R-expression. Because if it is
an R-cxpression, then it has to be A-free, which it is not (it is A-bound by John).
On siandard assumptions, the trace is not an R-expression, however. For a trace
10 be an R-expression, it has to be operator-bound. And we have just seen that
none of the intermediate traces in (31) qualifies as an operator. Similar problems
arisc with ungrammatical cases of improper movemen: involving chains that
terminate in a caseless position. Consider (33) (irrelevant details omitted):

Hans van de Kooi 39!
(33) * {, John, [vp scems [p it appears [4’ [§ 10 [vp like Maryl}1}]]

Here ¢, is the caseless non-operator-bound subject of an infinitive and hence not
an R-expression by anyone’s book. Therefore, Condition C will not rule (33) out
cither.

In order to account for these cases, Brody proposes the Chain Uniformity
Condition:

(39) Chain Uniformity Condition
The (sub-)chain (¢t;,....0) Of (Qys..eiBynrsGy) MUst be uniform unless
(Q%,....0,) contains an R-expression

For clarity’s sake let s also define Uniformity and R-expression:

(35) Uniformity
A (sub-)chain is uniform iff it involves only A-positions or only A’-
positions

(36) R-expression
A category o is an R-expression iff
@) « has referential features, or
(ii) o is an operator-bound trace

The uniformity condition (34) rules out (31) and (33) as required. In cach case the
foot of the chain is a trace in A-position that is not operator-bound. Hence, the
chain of which they are part must be uniform and neither of these chains is.
Strucure (30ii), by contrast, is fine. The foot of the chain is operator-bound by the
wrace governed by easy and hence the non-uniformity of the chain is licensed.

In the following subsection I will show how Brody’s approach to movement
can help us constrain the mapping from D-Structure 10 S-Structure.

2.2.5 Using the Chain Uniformity Condition to constrain move & Returning
now to our main theme, recall that we were looking for ways to constrain the
move_o* relation in such a way that we could avoid the generation of chains with
improper movement. This was part of a more ambitious goal: constraining the
move_a* relation to the point where it generates all and only well-formed outputs
without backtracking.

Our excursion in the previous section has far-reaching consequences. Some
of these are of importance for the overall approach to the GB parsing problem that
I am taking and will be discussed later. There are at least three results that are of
direct importance for our present concems. First, Brody’s theory, if essentially
correct, tells us that improper movement is not something to be avoided, but
instead has instances that produce a well-formed result. Second, it makes it
unnecessary to try to bring Condition C of the Binding Theory to bear on the
application of move a. In fact, under Brody's theory this would not even give us
the result that we want, because Condition C does not rule out all unacceptable

392 UCL Working Papers in Linguistics 3

cases of improper movement. Third, the Chain Uniformity Condition is a fairly
straightforward recipe for how we should reformulate the move_a* relation to suit
our purposes. When we are trying 10 prove that some S-structure can be derived
from some D-structure through the application of move @, then we are in fact
trying to prove the existence of a series of tree structures (of length greater than
zero) such that (i) the first tree is a D-structure, (ii) cach following wee is related
1o the previous one by one application of move a, and (iii) the final tree is a valid
S-structure. What this means in terms of chain uniformity is this: either (i) one
wee is related to the next by a uniform movement (i.e. from A-position 10 A-
position or from A’-position to A’-position) or (ii) one tree is related to the next
by non-uniform movement, in which case we must prove in addition that there
exists an R-expression in the sub-chain already derived (i.c. a c-commanding
operator binding a trace). I give a translation into first-order logic below:

37 (VT T,J) move_a*(ToT\J) & Ty =T, v
((@3T,) uniform_move_o(Ty,Tol) A move_a*(T,T,.N)] v
((AT,) non_uniform_move_o(Ty,TyJ) A
move_o*(T,,T..0) A
(30p.S) (operator(Op.T,) A
trace(S1.T,) A
¢_command(Op S 1,T))

I have provided the variable i to indicate that the move_o* relation must be
satisfied for all indices and because the predicates operator, trace and c-command
must have an index as their argument. What (25) says is that two trees are either
related through uniform movement or through non-uniform movement. In the latter
case, the result is only valid if the resulting tree contains a c-commanding operator
binding a trace. Since this requirement is checked immediately after an application
of improper movement, compatiblity with the CUP is guaranteed.

Compiling the Chain Uniformity Principle (CUP) into the move_a* relation
leads to a considerable reduction in the search space for this predicate. It is
difficult to estimate how big the reduction is in the general case, however, because
this is dependent on the number of landing sites that are A-positions. In the worst
case the number of A-positions and A’-positions that are potential landing sites
would be roughly equal. Assuming the earlier modification, which restricts
movement of a category with bar level b 1o a landing site with bar level b, the
number of possible derivations for any node in a tree of size n (n the number of
nodes) without compilation of the CUP would be roughly

13n 1/3n!
=0 (13n-k)!

With the CUP compiled into the move_a* relation, this would be reduced 10

Hans van de Koot 393

1/6n 1i6n!
y —
k=0 (l/6n-k)!

This is a substantial result. One might object that the gain in efficiency will be
partly or cven completely lost as a result of the amount of tree walking that will
have to be performed by the revised version of move_a*. We retum (o this matter
directly below, where we discuss similar objections in connection with compiling
Subjacency into move_a*.

2.2.6 Using Subjacency to constrain move « | already mentioned in passing that
it should certainly be possible to compile Subjacency into the move_a* relation.
Whereas the CUP was concemed with specifying potential landing sites
irrespective of locality consideration, compiling Subjacency into move_c* will
have the effect of ruling out many potential landing sites that do not satisfy certain
locality requirements. 1 will not attempt to give a FOL version of this version of
move_a* here, but insicad will sketch its form and discuss an objection that might
be raised against this approach.

A key part of the definition the move_a* predicate that tests nodes to sce if
they are possible landing sites with respect to Subjacency will have to be some
sort of mee-walking predicate. Tree-walking will be frequent, since for every
application of move & we have to find a suitable landing site. Exactly the same
objection might be raised with respect 1o the CUP-compilation proposal. One
might argue that this could make the modified move_a* relation quite inefficient.
Several remarks seem appropriate here. First, ree-walking will be frequent as well
if we have to test at S-Structure whether all nodes satisfy Subjecency (similarly
for the CUP at LF). Although in this case we have to walk the tree only once for
every S-structure, the tree-walk will have to be done over and over again if the old
version of move_a* produces one invalid S-structure after the other (as we have
reason to believe it will). Second, we might very well be able to come up with a
clever tree-walk for our revised move_a* that does not consider each and every
node in the tree. Starting from the trace that constitutes the launching site, the
wee-walk could look for the nearest c-commanding landing site meeting the
locality requirement imposed by Subjacency. In fact, this is precisely why we want
to compile Subjacency into move_a* in the first place. Third, if we let such a
“nearest node” search precede testing for satisfaction of the CUP, we would also
further reduce the search space associated with this principle. On top of that, it
seems quite likely that we could fold the CUP and the Subjacency components of
the move_o* predicate so that the tree-walk is performed only once for every
application of move a. Finally, tree-walking will be further reduced if we take
advantage of the standard co-routining techniques to rule out structures that violate
LF constraints at an early point in the proof.

394 UCL Working Papers in Linguistics 3

2.3 Summary and conclusions

1 have sketched a rather unconventional generate-and-test procedure that is
provided with the input string at D-Swucture to bring its guesswork down to
reasonable proportions. Better than that, this generate-and-test method does not
suffer from the decidability problems that make the naive generate-and-test method
virtually useless. Building the D-structure first has the advantage that the 6-
Criterion and X'-theory can be brought to bear on the parsing problem at an early
stage.

1 also pointed out that the "derivational” view of the mapping between levels
in GB-theory suggests novel ideas about grammar compilation. The compilation
methods | have suggested are not aimed at compiling away one or more levels of
representation, but instead at compiling away the vast search space introduced by
the completely unrestricted rule move a. The key idea I worked with was that
some principles of grammar can be regarded as exclusively "chain-related”. From
the point of view of the grammar, this means that these constraints, which are
generally assumed to be constraints on representations, can be reinterpreted as
constraints on derivations. From the point of view of parsing, such principles are
natural candidates for compilation into move . Some effort was put into showing
how such compilation steps might be realized.

Hans van de Koot 395

References

Abney, S. (1986). Licensing and Parsing. Proceedings of NELS 17, University of
Massachusetts at Amherst, Amherst MA.

Berwick, R. (1987). Principle-Based Parsing. Technical Report 972, MIT Antificial
Intelligence Laboratory.

Berwick, R. and A. Weinberg (1984). The Grammatical Basis of Linguistic
Performance. Cambridge, MA: MIT Press.

Berwick R. and A. Weinberg (1985). Deterministic Parsing: A Modern View.
NELS 18, pp.15-33.

Brody, M. (1950). Case Theory and Argumenthood. Ms. University College
London. [to appear in Linguistic Inquiry).

Chomsky, N. (1977). On Wh-Movement. In A. Akmajian, P. Culicover and T.
Wasow, eds., Formal Syntax. New York: Academic Press.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.

Chomsky, N. (1986). Barriers. Cambridge. MA: MIT Press.

Johnson, M. (1989). Parsing as Deduction: The Use of Knowiedge of Language.
The Journal of Psycholinguistic Research 18.1., pp.105-128.

Kashket, M. (1987). A Government-Binding Based Parser for Warlpiri, a Free-
Word Order Language. Technical Repont, MIT Anificial Intelligence
Laboratory.

Kolb, H.-P. and G. Thiersch (1990). Levels and Empty Categories in a Principles
and Parameters Approach to Parsing. ITK Research Report No. 19, Tilburg
University.

Koot, J. van de (1990). An Essay on Grammar-Parser Relations. Dordrecht: Foris.

Lasnik, H. (1985). Iilicit NP Movement: Locality Conditions on Chains?.
Linguistic Inguiry 16, pp.481-450.

Mackworth, A.K. (1977). Consistency in Networks of Relations. Artificial
Intelligence 8: pp.99-118.

Mackworth, A.K. (1987). Constaint Satisfection. In S.C. Shapiro, ed.,
Encyclopedia of Artificial Intelligence. New York: Wiley.

Marr, D. (1982). Vision. San Francisco, CA: Freeman.

Pereira, F. and D. Warren. (1983). Parsing as Deduction. In Proceedings of the
21st Annual Meeting of the Association for Compwational Linguistics. MA:
MIT Press.

Ristad. E. (1991). A Constructive Complexity Thesis for Human Language.
Technical report, Princeton University. (revised version of PhD disseration,
MIT (MIT AI Lab, Technical report 1260)).

Subler, EP., Jr. (1990a). The Logical Approach to Syntax. MIT Press,
forthcoming.

Stabler, E.P.. Jr. (1990b). Relaxation Techniques for Principle-Based Parsing. Talk
held GB-Parsing Conference, Geneva.

