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Abstract

Phrase structure grammar and dependency grammar are alternative systems for the
generation of syntactic structures. A great deal of effort has gone into proving the
mathematical properties of different classes of phrésc structure grarnmar. In
contrast, very little work has been done on the formal properties of dependency
grammars and what has been established relates to only one of many possible
classes of dependency grammar. In this paper we review some relevant facts about
phrase structure grammar and compare what is known about dependency grammar.
We suggest some ways of defining new classes of dependency grammar by
modifying rule formats, by allowing multiple heads, and by revising the adjacency
constraint.

1. Introduction

Phrase structure grammar (PSG) and dependency grammar (BG) are alternative
systems for representing syntactic structure. Their traditions are quite different.
PSG has its origin in Bloomfield's (1933) immediate constituent analysis. It was
formalized as a generative system by Chomsky (1956) who identified a number of
varieties of PSG. One of these, context free PSG (CFPSG), proved to be of
particular interest to computer scientists, who studied it as a formal system for the
representation of programming languages. A great deal is now known aboul
CFPSG and many results have been proven mathematically. (The more important
of these are summarised in Aho and Ullman 1972). The role of PSGs as the base
component of transformational grammars (Chomsky 1957, 1965) enabled resulis
from formal language theory to feed directly into the study of natural languages.
With the introduction of such extensions as the X' mechanism and the use of
featural categories, PSG was clevated 1o a position of prime importance in
monostratal theories of natural language (eg. Gazdar 1982; Gazdar er al. 1985),
whilst retaining its existing role in transformational theorics.

The story of DG is rather longer than that of PSG, dating back at least as far
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as the medieval speculative grammarians and perhaps much further; Covington
(p.c.) identifies the Arabic grammarians as a possible source. The works of
Jespersen (1924), Bloomfield (1933), Hjelmslev (1939), Harris (1946) and
Hockett (1958) all recognised the existence of dependencies between heads and
modifiers, and could thus, in a loose sense, be termed ‘dependency grammars'.
However, it was Tesniére (1953; 1959) who articulated the first abstract theory of
DG. Already we sce a significant difference in the development of PSG and DG.
The formal apparatus of PSG was developed first and then it was applied to the
analysis of natural languages. The notions of DG have been adduced in the study
of natural language for centuries bui they were not formalized until comparatively
recently. Although PSG and DG were first given formal expression at roughly the
same time, and in spite of the fact that (unformalized) DG boasts a much longer
history, PSG has had pride of place in modemn linguistic theory while DG has lain
largely unexplored.

There are many possible explanations for this disparity. Some of these may
concem the personalities and politics invested in the study of each framework. The
attractiveness of the larger frameworks within which they were being explored (eg.
transformational grammar) was probably a contribuling factor. A simple desire 1o
break with the past should not be ignored. The extent to which any or all of these
contributed to the relative unpopularity of DG is not known. While it would be
interesting from the point of view of social history, the answer could have little
relevance to modern linguistics. However, there is one possible contributory factor
which deserves further attention since it may bear directly upon current problems:
in comparison with PSG, the formal theory of DG is extremely under-developed.
In the absence of any other persuasive evidence, the better understood system will
always be selected. However, the lack of hard facts about DG leaves open the
question of whether either formal system is inherently ‘better’ than the other at
capturing the facts of natural language.

This paper presents a critical review of what is thought to be known about the
formal propenties of DG; it identifies a number of open questions concerning DG,
and sketches some possible solutions.

We begin with a brief overview of the main tencts of the formal theory of
PSG. Use of arcane symbols will be kept to a minimum. For a simple introduction
to formal language theory see Rayward-Smith 1983,

2. Phrase structure grammar

2.1 The form of PSGs
A PSG is a 4-wuple of the form:

G=(NLPS)
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where

1. Nis a finite set of nonterminal symbols. (These are the phrase names or
syntactic categories).

Z is a finite set of rerminal symbols, ie. the alphabet. £ is disjoint from N,
3. Pisafinite subset of

g

N U NNUID x(NUI)*

ic. the elements of P will have the form (a,f), where o consists of a
nonterminal which may be preceded or followed by any number of terminals
or nonterminals. B consists of any number of terminals or non-terminals,
including none (the emply set ). The elements of P are usually written
o —> B and are called productions or rules.

4. Sisasymbolin N and is called the start symbol.

A production rule is a mapping from one set of nonterminal and terminal symbols
corresponding to a particular string, 10 another set of nonterminal and terminal
symbols corresponding to the same string.

For example, a grammar which generates three ones followed by arbitrarily
many pairs of alternating zeros and ones (eg. 1110101, 111,
11101010101010101) would be defined as follows:
((S.A},{0,1},{(S,111A),(A,01A),(A,e)},S}. The productions are easier to read
if they are presented in a — B format, as in (1).

(1) a. S=5111A
b. A=01A
c. A—oe

Notice that all of the information present in the 4-tuple definition of the grammar is
recoverable from the productions in (1).

A number of observations can be made about the grammar in (1). All of the
rules have exactly onc nonterminal to the left of the arrow; this is interesting for
reasons which will emerge in the next section but it is not necessary given our
definition of PSG. The nonterminal A appears on both sides of the arrow in rule
(1b). This makes the rule recursive, that is, the production rule contains an
embedded reference to itself. It is recursion which, in general, allows a finite
grammar to generate an infinite language, and which in this specific case allows the
grammar to generate infinitely many 01 pairs. It is usually the case that grammars
are required to generate arbitrarily long, rather than infinitely long, strings so most
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recursive rules require an ‘escape haich’ to prevent them from looping indefinitely.
In this grammar it is the null rewrite rule (Ic) which terminates the recursion.
Recursion is not confined to single rules having the same nonterminal on each side;
it can equally be brought about by the interaction of several rules. For example, the
following rules introduce recursion: A — B, B — C,C — A. Although the
recursion is distributed across three rules, the effect is the same as if it had been
confined to a single rule.

We can show the derivation of a string, eg. 111010101, as follows:

2) S =111A
= 11101A
= 1110101A
= 111010101A
= 111010101

Here, we have rewritten one nonterminal on each line of the derivation. The same
information can be porirayed more helpfully in a tree, whose root is the start
symbol, whose leaves are terminals, and whose branches divide at nonterminal-
labelled nodes.

3) | l i 0 ] 0 1 0 1 e

PSGs are sometimes known as Chomsky grammars in recognition of the part
played in their development by Noam Chomsky. Chomsky's introduction of PSGs
in the late 1950s and early 1960s led to the most fruitful period of research in
formal language theory to date. A particularly useful contribution was his language
taxonomy which has come to be known as the Chomsky hierarchy.
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2.2 The Chomsky hierarchy

The Chomsky hierarchy of languages (Chomsky 1956, 1959) is defined by
reference to the grammars which generate the languages. The more restrictions that
are placed on the form of a grammar, the more restricted will be the range of
languages which can be generated by that grammar.

Type 0: Unrestricted languages
Suppose no restrictions are placed on the form of the productions in a grammar,
beyond the restriction implicit in the basic definition of PSG, namely

a-=p

where o and B arc arbitrary strings of (lerminal or nonterminal) symbols and
o # e. Grammars of this form are obviously known as the phrase structure
grammars; they are also known as type 0, semi-Thue, and unrestricted grammars.
The languages generated by such grammars form a class which are similarly
designated. They are also known as the recursively enumerable sets.

Type 1: Context-sensitive languages
Suppose a simple restriction is placed on the form of rules, namely the stipulation
that in rules of the form

a—p

B must be at least as long as o This has the effect of eliminating from the grammar
rules like (4) but allowing rules like (5).

(4) a. aBC—aD
b. AB- C

(5) a. aBc—oabc
b. ACH5BC

A grammar of this kind is known as a fype I or context-sensitive grammar. The
class of languages generated by rules of this form are likewise called type 1 or
context-sensitive languages. It is very hard to conceive of a language which is not
context sensitive. The only languages which have been proven 10 be non-context
sensitive (by complex diagonalization proofs) are not easily describable (Hopcroft
and Ullman 1979:224).

Type 2: Context free languages
Suppose a further restriction is placed on the form of production rules, namely the
stipulation that in rules of the form:
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a-f

a must be exactly one nonterminal symbol, while B can be any string of (terminal
and nonterminal) symbols. Grammars of this form and their related languages are
termed iype 2 or contexi-free. Neither (4) nor (5) are context-free; (6) is contexi-
free.

(6) a. A—-BC
b. A—De
c. A-f

Notice that these rules can not be interpreted as saying 'in the context of some
preceding symbol and/or some following symbol rewrite symbol X as Y.’ Instead,
they must be taken to mean ‘in any and every context, rewrite X as Y.

Type 3: Regular languages
Suppose a final restriction on the form of a production is introduced, namely the
stipulation that in a rule of the form

a-f

o must be exactly one nonterminal symbol, while B can consist of either a single
terminal or a terminal followed by a nonterminal, as in (7);

(7) a. A->a
b. A—aB

If all productions take this form, the grammar is said to be right-linear. If, instead,

B consists of either a single terminat or a nonterminal followed by a terminal, as in
(8), the grammar is said to be feft-tinear.

8 a. A—a
b. A—>Ba

For every right-linear grammar, there exists a left-linear grammar which generates
the same string set and vice versa. Right- and left-linear grammars are known as
type 3 or regular grammars. The single set of languages generated by both kinds
of regular grammar is also called the set of type 3 or regular languages.

Proper containment
A sct of languages Lt is properly contained in another set L2 if every language in
L1 is a member of L2, ic. L1 is a subset of L2. Leaving aside the emply string
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which causes a minor problem, any language of type » is properly contained in the
language of type n - I, where n e {1,2,3}. In other words, the regular languages
are properly contained in the context-free languages, the context-free languages not
containing the empty string are properly contained in the context-sensitive
languages, and the context-sensitive languages are properly contained in the
unrestricted languages. Formal proofs of the Hierarchy Theorem (as the above
generalisation is called) can be found in Aho and Ullman 1972: Chapter 2 and
Hopcroft and Ullman 1979: Chapter 9.

3. Dependency grammar

So far we have considered a variety of grammar which groups objects (terminal
symbols or phrases) into larger objects (phrases). In other words it encodes the
constituent structure of sentences. However, there is an aliemative view of
sentence structure which takes the notion of directed dependence as central. The
grammar is made to encode not the vertical relations between items and categories,
but rather the horizontal relations which hold between terminal symbols. The
insight here is that the presence of some item demands or allows the co-presence of
some other item. If it is possible to identify some sort of logical dependency
holding between symbols then it will be possible to describe a dependency
structure for sentences which is orthogonal to the constituent structure of those
sentences.

For example, consider the language consisting of the integers between -9 and
9 (excluding 0 for simplicity). The vocabulary of this language is
{1,2,3,4,5,6,7,8,9,+,-}. This vocabulary can be divided into the number
symbols {1,2,3,4,5,6,7,8,9} and the sign symbols {+,-). A well-formed siring
of this language consists of either a number symbol or a number symbol preceded
by a sign symbol. So, 5, -5, and +5 are all well-formed strings of the language.
Notice that a sign symbol can only appear in a string containing a number symbol
but a number symbol can appear without a sign symbol. This asymmetry can be
captured in a DG.

There is some terminological variation in the literature. Elements which
depend on others are called dependents or modifiers, elements on which others
depend are called heads, governors, controllers or regents. We shall use the
terms head and dependent.

3.1 The form of a dependency grammar

Considerably less formal work has been done on DG than on PSG. Gaifman has
developed the nearest thing to a ‘standard’ notation for DG rules (Gaifman 1965).
The rule formats are shown in (9).
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(9) a. Xi(le.ij.....*.....Xjn)
b. Xi(*)
c. *(X;)

In rules of this type, the element outside the brackets is the head of the construction
and the asterisk denotes that element. In rule type (9a), X; is the head and Xj to
X, are its dependents, where n > 0. The asterisk marks the position of the head
relative to its dependents in the string. Rule type (9b) notates the case where X;
can occur without dependents. Rule type (9¢) notates the case where X; can occur
without depending cn any other clement.

Using these conventions we can write a grammar to generate the single digit
integer language we defined above (where N is one of the digits and S is one of the
signs):

(10 =)
N(*)
N(S.*)

So far we have only mentioned the local relations which hold between heads and
dependents. However, it is necessary to make explicit a number of general
constraints on the form a grammatical sentence can take. The following constraints
are usually assumed.

(11) a. One and only one element is independent;
b. all other elements depend on some element;
¢. no element depends directly on more than one other; and
d. if A depends direcily on B and some clement C intervenes between them
(in lincar order of string), then C depends directly on A or on B or on
some other intervening element. (Robinson 1970:260)

We shall consider each of these constraints in turn.

One independent element

In PSG the start symbol is a distinguished non-terminal symbol which rewrites,
ultimately, as a legitimate string of the language. This means that the grammar can
refer directly 10 sentences. For example, if the start symbol is S, a sentence is a
phrase of type S. In DG there is nothing which dircctly identifics a sentence. The
grammar encodes permitted relationships rather than permitted phrases. However,
without referring directly to sentence-type objects, a DG can generate sentences. In
a dependency structure every word must depend on some other word with the
cxception of one word - the sentence roor - which is free. In a DG, the root
symbol (terminal) rather than the sentence symbol (non-terminal) is marked as the
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start symbol.

Connected dependency structures

In PSG all of the symbols in a sentence must form part of the same phrase
structure; likewise, in DG all of the symbols in a sentence must form part of the
same connected dependency structure. A word must be either the root or a
subordinate of the root.

Only one head

Each symbol (except the root) must depend on exactly one other symbol. This is
rather like the constraint which is implicit in our characterisation of PSG, that a
symbol or phrase may belong to only one category at a time; phrases must not
overlap.

Heads and dependents are adjacent

Let us consider the dependency structures we have defined so far. Dependency
relations hold between the symbols in a string; one of these symbols depends on
nothing at all, while all the others depend on exactly one other symbol. There are
at least two conventions for presenting such dependency structures
diagrammatically. In the first, exemplified in (12), dependency is represented by
the relative vertical position of nodes comresponding to symbols in a tree; if a line
connects a lower node to 2 higher node then the symbol comresponding to the lower
node depends on the one corresponding to the higher node. We shall call this kind
of diagram a stemma (following Tesnigre 1959). In (12), a, ¢ and d depend
directly on b, which is the sentence root.

%

S e - -
o
Q.

(12) a

A more complex example is given in (13). In this case, while b and e depend
directly on the sentence root ¢, the relationships between @ and d and the root are
indirect. Notice also that e depends directly on ¢ although they are separated by d
which does not depend directly on c.
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(13) @

An alternative diagrammatic convention moves away from using tree-like objects
which are confusingly suggestive of PSG structures, and instead represents
dependency relations by means of directed arcs. We shall adopt the convention of
directing arcs from heads to dependents, although (unfortunately) there is no
generally accepted labelling convention and it is not unusual to find examples in the
literature of arcs being oppositely directed. We shall, for the time being, refer to
diagrams of this kind as arc diagrams. Diagrams (14) and (15) are equivalent to
(12) and (13) respectively.

— Y

14) a b ¢ d

¥ 7 R
v v
(15) a b c d e

A rule of the form A(B,*) places no constraints on where B may be located, so
long as it precedes A in the string. [n principle, A and 8 could be separated by
arbitrarily many other symbols which depend on neither A nor B. However, most
work to date has concentrated on a class of dependency grammars which place an
additional constraint on the location of dependents, namely that presented in (11d)
above. This constraint is reproduced here for convenience.

(11) d. If A depends directly on B and some element C intervenes between them
(in linear order of siring), then C depends directly on A or on B or on
some other intervening element. (Robinson 1970:260)

This constraint can be seen to be satisfied in the above dependency structures. The
constraint is violated in the dependency structures shown in (16) and (17) so these
must be declared ungrammatical according to the version of DG under
consideration here.
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In (16), a violates the constraint. a is separated from its head ¢ by b which
depends on neither a nor ¢, neither does it depend on any element intervening
between a and c. In a stemma, the dotied line which connects a symbol with its
node is called its projection. It will be noted that in examples (12) and (13), links
and projections do nol intersect. Such diagrams and their corresponding syntactic
structures are said to be projective (Lecerf and Thm 1963). In (16) a link and a
projection are seen to intersect at precisely the point where we detected ill-
formedness. The same is also true in (17) . Here w is separated from its head z
by x and y. y is a dependent of z so the positional constraint is not violated
here. Neither are there any intersections in the stemma involving the projection of
¥ and the link between w and its head z. However, the positional constraint
forbids the intervention of the sentence root x between w and its head. Again,
exactly at the trouble spot, an intersection is found in the stemma. Diagrams like
(16) and (17), and the corresponding syntactic structures are said 1o be non-
projective.

The vocabulary of projectivity is rooted in the imagery of stemmas. A less
diagram-dependent terminology is preferable. We shall say that dependency
relations can only be established between adjacent items, where adjacency is
defined as follows:

(18) A is adjacent to B iff
Aidsnextto Bor

A is separated from B by C and C depends on cither A or B, oron 2
subordinate of A or B.
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Notice that arcs never cross in arc diagrams of structures which satisfy the
adjacency condition, whereas arcs do cross where the structures violate the
adjacency condition. (19) and (20) show the arc diagram equivalents of (16) and

a7n.
(19) a b ¢ d
(20) w X| y 2

Given that the two styles of diagram seem to be equivalent, there appears to be little
1o choose between them. However, as we shall discover below when we Iry to
extend the dependency formalism, the two styles make different predictions and the
tree diagram will be found wanting. In anticipation of this we shall adopt the arc
diagram henceforth.

A simple DG could be expressed as follows:

D=(1B)

where £ is a set of symbols and B is a set of dependency rules. Given this
definition it is not possible to make generalisations over sets of symbols. There
would have to be two sets of almost identical rules for any two symbols with the
same distribution. To overcome this, most practical dependency grammars are
expressed as 4-tuples having the form: '

D=(LC8D)

where I is a set of symbols, C is a set of category labels, & is an assignment
function which assigns symbols to categories, and B is a set of dependency rules.
Given this definition it is possible for rules to express dependency relations holding
between symbols and symbols, between symbols and categories of symboal, and
between categories and other categories. We used this shorthand notation in the
grammar of positive and negative digits (10), in which N stood for the symbols 1-
9 and § stood for the signs + and -, Somec writers define DGs as 5-tuples of the
form;

D=(LCAD S
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where S is a set of distinguished start symbols. Whether the start symbols are
identified in B or in § is purely a matter of taste; there are no implications for the
generative capacitics of the grammars the formalisms notate.

Notice that we have not said anything in these formalisations about general
restrictions such as the single head and adjacency constraints. These must be stated
elsewhere. Formal definitions of these constraints can be found in Gaifman 1965:
306.

3.2 (Some) dependency grammars generate context free languages
In comparing different grammars two main factors need to be taken into account.
Given any two grammars, (i) do they generate the same set of strings and (ii) do
the structures assigned to strings by each grammar correspond systematically 1o
structures in the other grammar? If two grammars generatc the same string sets they
are said to be weakly equivalent. If the siring sets are generated with
systematically corresponding structures they are said to be strongly equivalent. It
is useful to be able to compare specific grammars but we are more concerned here
to compare general frameworks, namely PSG and DG. If, for every grammar in
one framework there exists a weakly equivalent grammar in another framework,
then the two are said to be weakly equipotent. If, for every grammar in one
framework there exists a strongly equivalent grammar in the other framework, the
two are said to be strongly equipotent (for this usage sec Hays 1964:519).
Consider the following structure:

¥ R}
c d €

1) a b

This dependency structure could be simply converted into a constituent structure by
defining a constituent 1o consist of a word plus all its subordinates. Thus (21)
would be analysed as [[a bl c(d e]), i.e.:

(22) a b c d e

It is hard to conceive of any grammatical dependency structure which would not
have a corresponding phrase structure. This would suggest that every string which
can be generated by a DG can also be gencrated by a PSG. This is half way to

310



saying that DG and PSG are weakly equipotent. Before we consider the other half
of the argument - whether every string generated by a PSG can also be generated
by a DG - let us look briefly at the amount of information encapsulaied in each
representation. In (22) phrase structure is shown explicitly; in (21) phrase
structure can be derived from the dependency relations so the representations can
be said to encode the same amount of phrase structure information, although non-
terminals are missing from the dependency structure. In (21), the relations
between the symbols are directed; however, in (22) that information is lost and can
not be recovered. The most that can be said about @ and b is that some
dependency relation holds between them. The direction of that dependency can not
be established. Thus, we can immediately rule out the possibility of DG and
simple PSG being strongly equipotent. The structure shown in (22) conflates the
differences between four possible dependency structures. This is because it is not
clear whether a depends on b or vice versa, or whether d depends on ¢ or vice
versa.

Although DG and PSG are not strongly equipotent, Gaifman has proved that
DG and one type of PSG are weakly equipotent (Gaifman 1965). His proof is
indirect and resis on a proof that DG and categorial grammar are weakly
equipotent. Given that categorial grammar and CFPSG are known 10 be weakly
equipotent (Bar-Hillel er al. 1960) we may conclude that PG and CFPSG are
weakly equipotent.

Gaifman’s proof is complex and confusing. As well as showing the weak
equipotence of DG and CFPSG, he claims to demonstrate the strong equivalence of
DGs and a subset of CFPSGs. There are two problems with his exposition. First,
his definition of the relevant subclass of CFPSGs is opaque. Second, he defines
strong equivalence solely in terms of phrase structure. Thus, according to his
reasoning, since it is possible to recover a phrase structure from a dependency
structure, there must be strong equivalence. He fails to acknowledge the problems
in recovering a dependency structure from a phrase structure. This lack of clarity
and his idiosyncratic definition of strong equivalence have led 1o a number of
subsequent misunderstandings. For example, Lyons expresses uncertainty:
“dependency grammars...are weakly, and perhaps strongly, equivalent to phrase
structure grammars” (1970: 88). Robinson goes further, seeming 1o claim strong
equivalence: "For every structure-free [i.e. context free] DG there is a strongly
equivalent structure-free PSG (Gaifman 1965), and for every structure-free PSG
there is a systematically corresponding structure-free DG” (1970:263). Hudson
certainly interprets her as making a claim for strong equivalence: "Robinson has
shown that dependency structures and constituency structures are formally
equivalent, in the sense that one can be converted in a mechanical way into the
other” (1976: 199). Matthews, on the other hand, argues against strong
equivalence (1981: 84r).

The terms of this debate were significantly affected by the introduction of the
mechanisms of X* grammar (eg. Jackendoff 1977). X' grammars are CFPSGs in
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which the head of each phrase is marked explicity. Tﬁe general form of an X' rule
is:

xn+l oy xn

In principle, this should make it possible to establish the strong equivalence of
PSGs and DGs. However, there remain a number of uncentainties about the formal
propenties of X' grammars (Pullum 1985) so the debate is by no means closed.

4. Extending the dependency formalism

We have seen how the ‘standard’ version of DG has been shown to be weakly
equivalent to CFPSG and possibly strongly equivalent to X' grammar. [ would
suggest that these formal results have had a detrimental effect on research in DG
since it has seemed legitimate to dismiss DG as a 'notational variant’ of a more
familiar system, CFPSG. However, I would like to argue that, in fact, these results
only relate to one of many possible definitions of DG and that alternative
definitions may gencrate significantly different string sets and trees. We shall target
three DG constraints for further attention: the form of dependency rules, the single
head constraint, and the adjacency constraint.

4.1 The form of dependency rules
We have seen how the imposition of increasingly stringent constraints on the form
of PSG rules leads to the generation of increasingly restricted languages. In
principle, there is no reason why a similar exercise should not be carried out with
DG rules, leading to the definition of a hierarchy of languages which is similar or
identical to the Chomsky hierarchy. Although this is a very simple suggestion, it
has not - to my knowledge - been discussed in the literature. We shall consider
some ways in which the form of DG rules can be modified with possible
implications for the generative capacities of the resulling grammars.

In Gaifman's DG notation, rules may have the form shown in (9) (reproduced
here for convenience.

(9) a. Xi(le,sz.....‘.....Xjn)
b X;(*) :
C. *(Xi)

A maximally constrained DG would restrict rules to the following forms:

23) 2. X(X;.*)
b. X;(*)
c. *X;)
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These rules allow each symbol to have at most one dependent symbol. All
dependencies point in the same direction (right to left). Alternatively, all
dependencies could point in the opposite direction:

(29) a. X;(*.X;)
b. X;(*)
c. *X;)

Clearly, the set (or sets) of languages generated by grammars of this kind is (or
are) properly contained in the set of languages generated by grammars conforming
to (9) since rules of type (23) and (24) are well-formed rules of type (9). We may
hypothesize that (23) and (24) generate the type 3, or regular, languages, although
we shall not examine anly proofs here. There is a clear similarity between left-linear
type 3 PSGs and DGs expressed in the rule format of (23) and between right linear
type 3 PSGs and DGs expressed in the rule format of (24).

Consider the language (a”b" n 2 0). It is well known that CFPSGs can
generate this Janguage but regular grammars can not. Standard form DGs (9) can
also generate this language:

(25) a. *(a)
b. b(*)
c. a(*b)
d. a(*a,b)

However, DGs of the form found in (23) and (24) can not generate this language
since there is no way of ensuring that as and bs match (this is the purpose of rule
(25d).

It is worth pointing out that CFPSGs can only generate the language a"b" by
means of centre-embedding but Gazdar has argued (1988) that natural language
constructions of the form a”b” nest at the right or left periphery. The grammar in
(25) nests at the left periphery and the language could equally easily be generated
by a DG nesting at the right periphery.

Having considered a restricted version of Gaifman's rule formats, we now
examine how thcy may be extended. One way would be to introduce an element of
context-seasitivity. This could be accomplished by allowing all of the rule formats
given in (9) but additionally allowing arbitrarily many symbols to appear outside
the brackets. If one of the symbols outside the brackets is distinguished as head of
the symbols inside the brackets (for example, by enclosure within square brackets),
then the other symbols outside the brackets can serve to restrict the contexts in
which the rule may apply. For example:

(26) able]h(cd,*.f.g)
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This rule will serve to rewrite an e just in those contexts where it is preceded by
ab and followed by h. It is not yet clear whether this augmentation has any effect
on the generative capacity of the formalism. It is worth noting that this kind of rule
is additive, i.e. the symbols inside the round brackets are added to the symbol
inside square brackets preserving the relative ordering described in the rule. The
other symbols remain unchanged, serving only to describe context. A rewriting
step will never decrease the number of symbols in the string. PSG rules are string
replacement rules, i.e. what appears to the right of a rewrite arrow replaces
everything that appears to its left. It is possible with type 0 PSGs that the number
of symbols in a string will decrease after a rewrite operation. It is difficuli 10
conceive of any set of rule formats which could reasonably be termed a DG which
could ever erase symbols. If this is correct, then it could be argued that DG is a
more restrictive framework and so is a more attractive option for the description of
natural language than PSG.

An interesting set of unexplored questions relates to whether or not it is
possible to develop a normal form for DGs of a particular class. For example, is it
possible to convert an arbitrary bidirectional DG (in which dependencies point in
both directions as in (9)) into a unidirectional DG (in which all dependencies point
in the same direction)?

4.2 The single head constraint

From rule formats we turn to general constraints on the structure of well-formed
strings. In particular we shall reconsider the stipulation (11c) that no element
depends on more than one other element in a sentence. Altemative versions of DG
have been advocated for the analysis of natural language in which words may have
multiple heads. This position can be found in Hudson's Word Grammar (1984;
1990) and in Starosta's Lexicase (1988). They argue that multiple heads are
required if the facts of natural language are to be fully described. For example,
Hudson argues that in sentences like (27) Sarah is subject of both likes and
working.

v )

27 Sarah likes working

Earlier we suggested that stemmas and arc diagrams are not exactly cquivalent;
notice that arcs do not intersect in this diagram whereas projections do intersect in
the corresponding stemma:
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(28) Sarah likes  working

Hudson and Starosta are both very careful to restrict the circumstances under which
multiple headedness may occur. They are wise to do so since there are many open
questions about the real effects of introducing multiple headedness into the
formalism. It certainly rules out the possibility of the resulting family of DGs being
strongly cquivalent to any PSG, even those of the X' variety. It is not clear what
effect, if any, multiple headedness might have on the weak generative capacity of
the system. There are further implications for the form which rules may take and
the ways in which those rules should be interpreted.

Allowing multiple heads raises the possibility of generating structures
including interdependent symbols. For example, in (29) ¢ depends on b and b
depends on ¢. No constraints have been relaxed other than the single head
constraint.

¥ )
29) a b c

The formal implications of interdependence are not properly understood but any
formal treatment of a system allowing multiple heads could not remain agnosltic on
the subject.

4.3 The adjacency constraint
Itis widely agreed that what is required to account for the facts of natural language
is a formalism with generative capacity between that of CFPSG and context
sensitive PSG, somewhere around the capacity of the indexed languages (Gazdar
1988), also known as mildly context sensitive languages (Joshi 1985). In order to
generate languages of this capacity and also to permit the construction of particular,
semantically motivated structures, some DG theorists have proposed that the
adjacency constraint be either abandoned or modified. Amongst those advocating
the abandonment of the constraint are Pericliev and Ilarionov (1986) and Sgali,
Hajicova and Panevova (1986). Those advocating modified versions of the
adjacency constraint include Hudson (1984; 1990). We shall consider each of these
approaches in tumn.

An apparent advantage of abandoning the adjacency constraint is that it should
be possible to generate structures like that in (30), in which people is separated
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from its head like by a number of elemems which are dependent on neither,
including know which is not dependent on anything at all.

|~ Y
Y

(30) people ! know you think I like

Indeed, for an analysis of natural language it is desirable to be able 1o generate just
such a structure for this sentence. However, there are compelling reasons for
believing that wholesale abandonment of the adjacency constraint is not the best
way of legitimizing this kind of proscribed structure. Far from extending the power
of a DG, abandonment of the adjacency constraint actually reduces the expressive
power of the formalism. For example, it is no longer possible o generate the
language a™b”. In a framework devoid of an adjacency censtraint, the previously

adequate rules in (25) would generate all of the strings in a™5", plus many strings
not in the desired language, eg.:

CNC YTy 1
a b - b

@an a a b

The alternative approach is to re-define the adjacency constraint so that it allows
desired structures and blocks unwanted structures. Hudson offers the following re-
formulation:

(32) D is adjacent to H provided that every word between D and H is a
subordinate either of H, or of a mutual head of D and H. (1990:§6.4).

Hudson's definition of ‘subordinate’ is unusual in that every word counts as a
subordinate of itself. This revised version of the adjacency constraint serves to
prohibit structures like (31). It allows desired structures like (27), which violate the
conventional version of the adjacency constraint. However, it also prohibits desired
structures such as (30). Hudson's revised adjacency is part of a package which
includes the use of semantically vacuous links (called visitor links) to mediate
desired, non-standard dependency links in a 'hopping' analysis (Hudson, this
volume). Hudson's version of (30) would look like this:
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(33) people 1 know  you ! like
Hudson may constrain his grammars by careful use of rules but serious problems
remain with his formalism. For example, his version of the adjacency constraint
would allow every possible string given a vocabulary, so long as it was maximally
connected, i.e. every symbol was dependent on every other symbol (except one of
the peripheral symbols which was root and so depended on no other symbol).

Both the abandonment of the adjecency constraint and its revision have
serious implications for the generative capacities of DGs. However, not only is
there an absence of formal results in this area but there is also an absence of
analytic techniques. These too must be flagged as research questions.

5. Conclusion

We have reviewed the main points of what little formal work has been donein the
study of DGs. We have seen that ‘standard’ DG is equipotent with CFPSG. We
have described a more restricted version of DG and hypothesized that it is
equipotent with the regular grammars. We have also outlined a less restricted
version of DG but we have not investigated its generative capacity. Other open
questions concem the possibility of converting DGs to a normal form, the effect of
allowing multiple headedness and the effect of relaxing or discarding the adjacency
constraint. If DG is to be taken seriously as a resource for linguistic theories, then
these questions must be addressed.

This work could be interpreted simply as an attempt to make DG's formal
basis as respectable as that of PSG. That is certainly an issue of concemn, but there
is another, more important reason for following this line of inquiry. While the
landscape of DG remains unexplored, it will never be known what previously
unimagined classcs of language lic waiting to be discovered.
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