- 296 -
PARSING AND DEPENDENCY GRAMMAR

Norman M. FRASER

Abstract

Current characterisations of dependency grammar are not equivalent to
phrase structure grammar in a number of important respects. As a
consequence, parsing algorithms for phrase structure grammars are of
questionable relevance to dependency grammars. This paper presents a new
parsing algorithm - the "Bonding Algorithm” - which is used to parse input
in terms of the dependency-based theory of Word Grammar. A parse stack
controls the bonding of syntactic "molecules”, where a molecule consists of
a head word plus a record of all its dependents, along with details of the
“valency" or dependency requirements of the molecule. The special-purpose
"visitor” relation and the technique for deriving new dependencies from
existing ones are amongst the novel devices embodied in the parser. Some
superficial similarities with categorial grammar parsers are noted but these
must be treated with caution since the differences appear to outweigh the
similarities.

1 Dependency and constituency'

Following the findings of Gaifman (1965), it is widely accepted that for
every dependency grammar there is a weakly equivalent context-free phrase
structure grammar. According to Robinson (1970), every dependency
grammar has a strongly equivalent context-free phrase structure grammar and
possibly vice versa. Gaifman and Robinson both used a characterisation of
dependency in which it is true of every well-formed string that:

i) there is a single sentence root (one independent element);
ii) all other elements depend on some clement;

iii) no element depends directly on more than one other;

iv) each dependent is adjacent to its head.

A dependent is said 10 be adjacent to its head if it is not separated
from that head by anything apant from other dependents of the same head or
of the dependent itself. This restriction has much the same effect as the
constraint which prohibits the crossing of branches in phrase markers.

1This work has been carried out with the support of the Procurement
Executive, Ministry of Defence. An earlier version of the paper was presented
ar the Autumn 1988 (Exeter) meeting of the Linguistics Association of Great
Britain. My thanks to Dick Hudson for his many valuable comments on
earlier drafis.

- 2907 -

Sentence (1) illustrates these features (arrows point from heads 10
dependents).

(1) The condemned man ate a heanmld‘asl

In example (1) 1 have adopted two controversial positions which
deserve to be noted although they are not crucial to the argument. Firstly,
dependency relations hold between single words and not between larger
constituents. This approach has been advanced by Hudson (1984) and
incorporated into his dependency-based theory of Word Grammar (WG).

Secondly, 1 have adopted an analysis in which nouns depend on their
determiners rather than the more usual reverse case.

While important issues are involved in both of these points I do not
wish 1o argue them here. Had I chosen another sensible set of assumptions it
seems likely that the general sentence processing strategy I am going to
present would be equally relevant.

It is possible 1o map dependency structures onto phrase structures by
bracketing each word together with its dependents to form phrases. Using
this method we could map the dependency structure in (1) onto the phrase
structure bracketing shown in (2).

(2) ([The (condemned man])) ate [a {hearty breakfast]))

This is a reasonable - though unusual - phrase structure analysis of (1).
What is clearly missing from it is any information relating 1o the direction
of dependencies. For example, does hearty depend on breakfast or breakfast
depend on hearty?

The advent of head-marking phrase structure grammars (Jackendoff,
1977) represents an imponant step forward in this respect since it is possible
10 envisage a function which uniquely maps a head-marked phrase structure
sentence analysis onto a dependency analysis.

The relatedness of phrase structure and dependency structure systems
has obvious implications for parsing. David Hays has observed that "a
phrase structure parser can be converted into a dependency parser with cnly
a minor alteration” (Hays, 1966: 79). Since a great deal is known about the
formal properties of context free phrase structure grammars and the parsing
algorithms available for those grammars (for example see Aho and Ullman,
1972), it is hardly surprising that people wishing to produce dependency
analyses of sentences should wy to utilise existing phrase structure tools as
much as possible. If a dependency structure can be produced by applying a
mapping function to the output of a phrase struciure parser then it would
seem perverse not to adopt this strategy. Alternatively, if it is required that
the grammar as well as the analysis be expressed in terms of dependency,
this can be achieved by using an existing phrase structure parsing algorithm
to construct not constituents but head-dependent structures. In both cases the

- 208 -

grammars can be expressed in terms of collections of rewrite rules (Hays,
1964; Levelt, 1974:135).

These techniques may or may not have been feasible or useful in the
past but what can not be questioned is that they presuppose a particular
characterisation of dependency stucture which is seldom advocated at the
present time, namely that given in (i)-(iv) above. Just as the formal
definition of phrase structure grammars has been augmented w0 deal with
natural language phenomena (for example, in order to analyse discontinucus
constituents it may be necessary to allow crossing branches in trees), so the
definition of dependency grammars for natural languages has deviated
significantly from the formal standard. Very few people would now advocate
the kind of simple dependency system Gaifman and Robinson assumed. A
number of refinements introduce clear divergences from all current phrase
structure characterisations. We shall briefly consider three of these
refinements.

1) Multiple heads

In phrase structure grammars which incorporate the notion “head”, a
constituent is defined as the phrasal projection of X where X is the head of
the phrase containing X and its arguments (if any). One consequence of this
definition is that a phrase must contain exactly one head. Another
consequence is that an argument can stand in relationship to exactly one
predicate, namely the head of the phrase in which it occurs.

In his dependency-based theory of Lexicase, Starosta analyses
"prepositional phrases” as exocentric constructions, having not one but two
heads (or “coheads”) (Starosta, 1988:232ff). This violates the X-bar one-head
constraint.

In sentence (3a) there are good reasons for recognising John as the
subject of both keeps and snoring. It is John who is doing the keeping and
the snoring. (3b) would have the same structure as (3a). Here it should be
clear that raining rather than keeps selects ir. John is a suitable subject in
(3a) but not in (3c). Replacement of the proper noun John by the pronoun
he (3d) does not change the result.

M
3) a John keeps snoring

b. It keeps raining
c. * John keeps rining
d. * He keeps raining

This kind of double dependency analysis is adopied in Hudson's WG
(1984:82f1). It is difficult t0o see how such an analysis could be translated
into a labelled bracketing and even if it could the subject would have to act
as argument to two predicates at the same time. Much more complicated
structures can also be generated. (4) shows the WG analysis of a sentence in
which one word is the subject of five other words at the same time,

- 269 -

“4) She seems o ant o sing

It should be clear that this kind of conswruction has no parallel in
phrase structure grammar.

ii) Interdependence

It can sometimes happen that two sepamate dependency relations,
licensed by two separate rules in the grammar, can involve only one pair of
words. For example, a dependency grammar might include a rule which
swates that the verb like requires an object as in (5).

() Pepe Thes pasta

There might be another rule which states that the dependent of a
relative pronoun is a finite verb (ic, the main verb of the relative clause), as
in (6).

TN TN
(6) people who like pasta

The interaction of these two rules can occasionally lead to the verb
being the complement of the relative pronoun while the relative pronoun is
the object of the verb. Sentence (7) illustrates this interdependence.

/—\
(7) people who I like

The different grammatical relations signify different things and their
occasional coincidence in constructions like this need not be regarded as
undesirable.

This kind of interdependence can not be represented in a phrase
structure grammar; in particular, it can not be represented in a head-marking
phrase structure grammar since both related words are simultaneously heads
and dependents.

- 300 ~

iii) Revised adjacency

The version of adjacency given above prohibits multiple-head
constructions like the one shown in (8).

However, all of the dependency relations here are well motivated within
WG.

Sentence (9) represents another kind of useful construction which is
prohibited by the adjacency principle since the extracted item cats is not
adjacent to its head adore.

N

TN
(99 Cais you must know I adore

Simply abandoning the notion of adjacency to allow sentences like
these would lead 10 undesirable constructions (such as (10)) being allowed.

(10) * Black the grapes were expensive

The WG solution is to reformulate the adjacency principle to allow
sentences like (8) and (9) but not (10).

Tie Apiacexcy PRINCIPLE

A word must not be separated from its head by anything
other than a subordinate of one of its heads. (Hudson,
forthcoming).

SUBORDINATES

A is a subordinate of B if A is B, or A is a dependent of
a subordinate of B (Hudson, 1988:192),

Although phrase structure systems can be augmented to cope with
discontinuous constituents, it is clear that some significant differences
distinguish their analyses of sentences (8) and (9) from the dependency
analysis given here.

- 301 -

Current versions of phrase structure grammar and dependency grammar
can not be said to be equivalent Contrary to Hays' observation, a phrase
structure parser can not be “converted into a dependency parser with only a
minor alteration”. Neither is it appropriate to assume that a dependency
parser can be constructed by taking an available phrase structure parser and
adding a post-processor (0 map phrase structures onto dependency structurcs.
If dependency structures are going to be used in linguistic analysis - and this
is a scparate question - then it is vital that more effort be focused on
dependency parsing as an autonomous discipline and not simply as a minor
variant of phrase structure parsing.

2. Dependency parsing

In comparison with phrase structure parsing, very little work has been
done specifically on dependency parsing. Much of that is being carried out
in West Germany and Eastern Europe where dependency remains the
dominant tradition in syntax. In Heidelberg, Hellwig (1980) has been
working on the PLAIN system which has a shared representation for
dependency and constituency information. Kunze (1982) has been leading a
research team in East Berlin for a number of years and in Prague, Sgall and
his colleagues (1986) have developed Functional Generative Description
which is based on dependency but also employs many other non-standard
features. Some of the most impressive work has been done at the SITRA
Foundation in Helsinki (Valkonen et al., 1987) where the special strengths of
dependency in capturing generalisations in variable word order languages are
being exploited in parsing systems. Covington in Georgia, USA, has also
focused on problems of variable word order in his prototype system. At
NEC in Japan, Fukumochi and his colleagues are building dependency-based
computer systems for parsing Japanese, as is Starosta in Honolulu (Starosta,
1988; Starosta & Nomura, 1986). Finally, in London, Fraser (1985) and
Hudson (1986) have implemented a number of WG parsers.

The basic idea in dependency parsing is not 10 combine constituents to
form larger constituents but rather to satisfy the valency requirements of
individual words. A word can have a number of slots which require fillers
of particular kinds. A word can itself be the filler for slots belonging to
other words. Most of the dependency parsers reporned in the literature adopt
a blackboard methodology. In artificial inteldligence (AI) a blackboard is a
shared data structure which is used as the only means of communication
between different processes. Roughly speaking, parsing proceeds as follows:

a) Find the current word’s valency (usually recorded in the lexicon).

b) See if the valency requirements of the cumrent word are satisfied by
any word on the blackboard. If so, check that the two words are
adjacent. Adjust the blackboard and the cument word's record
accordingly.

c) Broadcast on the blackboard the most recent information about the
current word.

d) Get the next word and repeat the same procedure for it.

Blackboard-based processing is used successfully in a wide range of Al
applications. However, its very generality can be seen as a hindrance to

- 302 -

computational efficiency and conceptual clarity. The rest of this paper will
introduce a dependency parsing algorithm which is both efficient and simple.

3. The bonding algorithm

The work reported here has been carried out within the framework of
WG. More detailed introductions 10 the theory can be found in Hudson,
1984; Hudson, 1988; Hudson & van Langendonck, forthcoming.

As we have seen, one of the central claims of WG is that a grammar
need only refer to word-sized items. However, there is no theoretical reason
why a WG parser should share the same restrictions as the grammar. Indeed,
it is only 10 be expected that the procedural part should use different
structures from the declarative part of any sysiem. I propose that, while a
grammar may only refer 1o word-sized items, a parser should be allowed to
refer in addition to two other kinds of data structure: melecules and stacks.

To help understand the approach to parsing introduced here, we will
draw an analogy with chemistry and the process of molecular bonding. An
atom with a positive or negative charge is called an fon and its overall
charge is called its valency. Similarly, a single word is said to have a
valency. Where ions have a positive charge, words have a requirement for
dependents; where ions have a negative charge, words have a requirement
for a head. When a positively charged ion meets a negatively charged ion
(and other factors permit) the two ions bond to form a single molecule. Any
imbalance in charge between the two ions remains as a property of the
molecule (although ultimately it is the property of a single nucleus). In like
fashion, a word which requires (or allows) a dependent can bond with a
word which requires a head to form a molecule unless any constraints
prevent it. Any slots (charges) not involved in this bond remain as properties
of the molecule. Molecules can bond with other molecules. Grammaticality
is analogous to molecular stability in chemistry - in our model a molecule
with saturated valency can serve as a sentence. This is important since the
largest structure a WG grammar refers (o is the word.

For obvious reasons, the scheme presented here is called the bonding
algorithm.

3.1 Molecules

A molecule is a structure consisting of a root word plus all its
subordinates. We shall characterise molecules as four-element lists of the
form shown in (11).

(m (Negative-list, Positive-list, Subordinates, Derivable }

Negativelist = a list of unfilled head slots. A typical
Negative-list entry would look like (12):

12) [2, common-noun, head, word, either]

Here, 2 significs that the word which licensed the slot is
the second word in the sentence. The next item tells us that
it was a common-noun. After that comes the slot label:
head. The next item says that the filler can be any class of

- 303 -

word and the final item indicates that word-2 can gither
precede or follow its head.

Positive-list = a list of unfilled dependent slots. A typical
Positive-list entry is shown in (13).

(13) { 3. finite-verb, subject, noun, before }

Here, 3 signifies that the word which licensed the slot is
the third word in the sentence. The next item tells us that it
was a finite verb. Afier that we have the information that
the dependency relation involved is the subject relation. The
next item constrains the possible subject fillers. to pouns
and the final item shows that the subject must come before
word-3 in lincar order. Notice that here we specify the
position of the slot-filler relative to the word which licenses
it, whereas in the case of Negative-lists the position
specified is that of the licensing word in relation to the
slot-filler.

There is, of course, a certain amount of arbitrariness in the
association of positive charge with dependency requirements
and negative charge with head requirements rather than vice
versa. The significant point is that they are muwally
atoactive opposites.

Subordinates = a list stucture containing records of all
subordinate words and their dependency relations. We shall
see how this works in section 3.4,

Derivable = a list of slots and information detailing how 10
derive the fillers from existing relations. Again, it is not
necessary to know its internal stucture at this point. We
shall learn more of its structure and function in section 3.8.

32 Stacks

A stack is a list which can only be accessed from one end so that
additions and subtractions must take place from that point. This produces
storage and retrieval propertics of the "last in, first out” varicty. Stacks are
normally visualised as vertical structures so items are said to be stored and
retricved at the top of the siack: the opposite end is the botrom. When an
item is stored, it is said 1o be pushed onto the stack; when it is remieved, it
is popped off the stack.

In our parsing algorithm, a single parse stack is used, and only
molecules may be pushed onio it.

33 Preliminaries

The parser works in a lefi-to-right, one-pass manner. It would be
inaccurate to describe it as cither top-down or bottom-up since these are
expressions which are rooted in phrase structure grammar. In spirit, however,
it is a bonom-up parser since it begins with the words of the sentence and

~ 304 -

attempts to build a swucture. Of course, the structure is built between the
words and not above them.

The parser reads one word at a time, constructing for each word a
frame of slots and constraints on fillers. The information which is used to
build a frame is obtained from the grammar. Since all rules in a WG refer
to word-sized units, there is no obvious distinction between grammar and
lexicon. Grammatical information is expressed in terms of simple
propositions which describe the structure of a generalisation hierarchy. The
lexical entry for a given word is produced on demand by a process of
property inheritance (Fraser, 1985). This kind of hierarchically structured
lexicon is currently being advocated by a number of linguists working on
other theories (eg. HPSG: Flickinger, 1987, Pollard & Sag, 1987; Cognitive
Grammar: Langacker, forthcoming; Gazdar, 1988). However, for the purposes
of the present argument it is not necessary to be familiar with these notions.
It is sufficient to know that some mechanism exists for using a
lexicon/grammar to construct a word frame appropriate for each word.

Some slots in the frame may be filled immediately by observation (eg.
those penaining to morphology, phonology, and the like) but others will
require a certain amount of processing before they can be filled. These arc
the standard valency slots and the slots with derivable fillers.

Let us consider the familiar example given in (14). For the sake of
simplicity we shall only mention relevant properties.

/\/\
(14) John loves Mary

This would yield the frame for word-1 given in (15) (expressed in
propositions of the WG metalanguage).

(15) word-] isa proper-noun

word-1 has (a head)
word-1 has (mano pre-adjunct)
word-1 has (ano post-adjunct)

(pre-adjunct of word-1) is (a adjective)
(post-adjunct of word-1) is (a preposition)
(pre-adjunct of word-1) precedes word-1
(post-adjunct of word-1) follows word-1

Propositions which license slots contain a quantifier which indicates the
status of the slot. We shall only consider the meanings of the three most
common quantifiers. These are given in (16):

(16) a this indicates that the slot must be filled
obligatorily.

ano this indicates that the slot may or may not be
filled (ie. it is an optional slot).

- 305 -

mano this indicates that any number (from zero
upwards) of specified slots is licensed. So, in
English, a noun may be preceded by any
number of adjectives including none.

Word frame information can be expressed much more compactly if it is
converied into the molecule format. The molecule which would be
constructed for word-1 is given in (17).

(17) [[[1,proper-noun,[a,head],word,either]],
[{1.proper-noun,[mano,pre-adjunct),adjective,before),
[1,proper-noun,{ano,post-adjunct),preposition,after) |
0.
{11

34 Molecular bonding

At the heart of the parser lies a process for combining molecules to
form larger molecules. In general, if some element of the Positive-list of a
molecule can be combined with some element of the Negative-list of another
molecule (or vice versa) then the second molecule can be merged into the
first to produce a new, larger molecule. We illustrate this process by means
of a worked cxample. (18) shows the initial molecule which would be
constructed for word-2 of sentence (14).

asg) N
[[2, finite-verb, (a, subject}, noun, after],
[2, finite-verb, {a, object], noun, after]],

{l.

1]

For the sake of simplicity 1 have ignored the requirement in English for
subject-verb agreement. This can be accommodated in the framework but it
would require some digression.

In order to talk about the process of molecular bonding, we will
identify the elements of Positive-lists and Negative-lists by means of the
names given in (19).

(19) [number, class, [quantifier, slot], slot-class, order)

We will attempt to bond (17) and (18) by trying to unify an element
from one Nepgative-list with an element from the Positive-list of the other
molecule. We will say that the two unify if the following conditions hold:

a) A isa B, where A is the Negative-list class and B is the
Positive-list slot-class;

b) C isa D, where C is the Positive-list class and D is the
Negative-list slot-class;

- 306 -

¢) the Positive and Negative orders unify; before unifies with
before, after unifies with after, cither unifies with anything, but
before and after will not unify with each other.

Let us consider the first element of the Positive-list of (18) and the first
(and only) clement of the Negative-list of (17). These are shown in (20).

(20) +ve [1, proper-noun, (a, head], word, cither]
-ve [2, finite-verb, [a, subject], noun, before]

When we try to match these lists we find that:

a) "proper-noun isa noun" succeeds
b) "finite-verb isa word" succeeds
¢) cither unifies with hefore

therefore the conditions are satisfied and the molecules can bond. The
structure of the resulting molecule is shown in (21).

@D o1
[[2, finite-verd, {a, object], noun, after] },
(][subject, 2, 1] J,
]

Several interesting things have happened here. First of all, the matching
clements - a Negative element of (17) and a Positive element of (18) - have
collapsed into a single element which is recorded in the Subordinates list
(read this clement as “the subject of word-2 is word-17). In addition, two
Positive elements of (17) have been deleted. We shall presently discover the
reason for this.)

35 Unification

The basic operation in molecular bonding is unification (Shicber, 1986).
Unification-based models of a wide range of current linguistic theories have
been developed. The list includes Lexical-Functional Grammar, Generalised
Phrase Swuucture Grammar, Head-driven Phrase Suucture Grammar,
Government-Binding theory, Categorial Grammar, Situation Semantics,
Systemic Grammar and, of course, Dependency Grammar. The fact that a
single operation can underic models of different theories is sometimes
claimed to be of value in comparing and evaluating theories. However, the
very simplicity and generality of unification almost certainly robs the claim
of most of its strength. I make no such claims for the model presented here.
Unification is exploited in the model because it is a simple and effective
low-level matching and structure-building operation.

3.6 Using the stack

The ability to unify molecules is of litle value by itself. Structures like
(10) must be avoided. This is where the stack comes into play. Only two
molecules are available for combining at any one time, namely, the top two
molecules on the parse stack. We shall refer to the top-most molecule as Ml
and the next one down as M2. To begin with, checks are made to see if M2

- 307 -

can depend on Ml (ie. if some element in M1's Positive-list will unify with
some clement in M2's Negative-list). If these tests succeed then the two
molecules are combined to form a new one. If not, then checks are made to
sec if M1 can depend on M2. Again, if they unify, then the two molecules
bond to form a new molecule. Since the two molecules have combined to
form one new one, this becomes the new M1 and the next highest stack
clement becomes available as M2. If two molecules will not bond, then the
stack remains unchanged. The next word of the sentence is then read and a
new molecule is constructed and added 10 the parse stack.

By the end of a sentence, there should be a single molecule left on the
stack. If there is more than one then the parser has been unable to find a
single dependency structure for the input string.

There are several reasons why a stack-based parser might be preferred
to a blackboard-based parser. First of all, the stack-based model is much
more cfficient since it is only ever possible to consider bonding adjacent
molecules, whereas in the blackboard mode! the adjacency constraint had to
be applied after almost all the other processing had been done. This led to a
significant amount of effort being wasted exploring options which would
never lead anywhere. The reason for the saving is that the stacking model
makes much of the adjacency principle implicit 1o its operation. In fact, the
adjacency principle can be said to be a high-level description of the
structures which are produced as artifacts of the language processor. This is
rather different from the earlier view that the adjacency principle
corresponded to some actual component of the language processor.

Another strength of this stack-based approach is that it provides neat
ways of identifying and closing down impossible search paths as soon as
possible. This was a particular problem for blackboard-based models. Recall
that when we combined molecules (17) and (18), we produced a new
molecule (21). However, in the process, we lost the two slots shown in (22):

(22) [1,proper-noun,[mano,pre-adjunct],adjective,before]
[1,proper-noun, [ano,post-adjunct),preposition, after]

It should be cbvious that the first word of a sentence can not possibly
have a pre-adjunct. However, we are able to appeal to a more general
principle which states that any M1 which has optional slots for dependents
with the before order feature, will have these options closed if it is found
that the stack is empty; that is to say: there are not and never will be any
available fillers. Likewise, if M1 has non-optional slots for preceding fillers
and the stack is empty, then no single dependency structure will ever be
able to link all of the words of the sentence in a ccoherent analysis.

The reason for the erasure of the post-adjunct slot is that there is a
gencralisation which says that when an M2 is combined with an M1 as its
head, any optional after slots it may have had are removed. This is because
structures of the sont shown in (23) can never occur.

AN

23) * 1 2 3

- 308 ~

If the slot had been obligatory then once again we would have known
that a fully connected analysis of the sentence could never have been
produced so we would have aborted at that point.

It is important to be able to spot "dead-end” analyses as quickly as
possible since lexical ambiguity tends to be of such proportions that there
arc often several paths and many more partial paths through a sentence. If
the partial paths can be abandoned as soon as possible, the amount of
fruitless processing can be pared down to a8 minimum.

37 A worked example

In order to get a clearer idea of the warking of the bonding algorithm
let us consider the step-by-step analysis of senience (24). This appears under
(25). The grammar fragment used in this analysis appears as (26).

[
(24) The big far car likes large meals

(25)
8} The
READ WORD 1
STACK No M2 to bond with
2] big
The
READ WORD 2
STACK M1 & M2 will not bond
(3) fat
big
The
READ WORD 3
STACK M1 & M2 will not bond
14] cat
fat
big
The

READ WORD 4
STACK M1 & M2 will bond

(5)

[6)

7

(8)

9]

(10]

fat cat
big
The

- 309 -

AFTER BONDING

STACK

T a—
big fat cat

The

M1 & M2 will bond

AFTER BONDING

STACK

The big fat cat

M1 & M2 will bond

AFTER BONDING

STACK

likes

X

The big fat cat

No M2 10 bond with

READ WORD 5

STACK

e\

The big far cat likes

M1 & M2 will bond

AFTER BONDING

STACK
large

N
The big fat cat likes

No M2 10 bond with

READ WORD 6

STACK

M1 & M2 will not bond

nj

(12]

(13]

(26)

38

- 310 -

meals
large

& S
The big fat cat likes

READ WORD 7
STACK M1 & M2 will bond

&
large meals

The big fat cat likes
AFTER BONDING
STACK M1 & M2 will bond

The big fat cat likes large meals

AFTER BONDING

STACK No M2 to bond with
Input complete

determiner has (a complement)
adjective has (a pre-adjunct)
noun has (mano pre-adjunct)
tensed-verb has (a subject)
w-like has (a object)

(complement of determiner) is (a common noun)
(pre-adjunct of adjective) is (a adverb)
(pre-adjunct of noun) is (a adjective)

{subject of word) is (a noun)

(cbject of word) is (a noun)

(pre-adjunct of word) precedes word
(post-adjunct of word) follows word

subject isa pre-adjunct
object isa post-adjunct

Visitors

The stack itself can be wreated as a data object; rules can be written to
recognise and manipulate particular stack configurations, We have already
seen how it is possible to use the absence of an M2 to predict the

- 311 -

fruitlessness of analyses where M1 requires a pre-adjunct. Now we will
consider how some apparently problematic stack configurations can be turned
1o good account.

Let us consider what happens during the parse of a sentence in which
the object has been extracted. If we analyse sentence (27), we arrive at a
point where the stack can be represented as in (28).

27 The woman [love
(28) 1 love

The woman
STACK

At this point, M1 has no more normal slots allowing preceding fillers.
We know that no matter what follows, the present M2 will be stranded at
the bottom of the stack since love is the root of the sentence and a word on
one side of the root may not depend on a word on the other side of the root
under normal circumstances. A molecule containing the root of a sentence is
casily recognisable since its Negative-list will always be empty. There is a
rule in WG which says that a finite verb has no head unless it is required to
by the presence of some other element (eg. a complementizer).

When just this configuration is encountered - M1 is the root molecule
and M2 is a stranded molecule at the bottom of the stack - the special
purpose visitor relation is established between the root of M1 and the root
of M2. M2 bonds with M1 in the usual way and a new element "{visitor,
R1, R2])" is added to the Subordinates lkist, where R1 is the root of M1 and
R2 is the root of M2. WG has a rule which says that where a word has a
visitor and requires some other dependent whose slot-filling constraints are
met by the visitor, then the visitor relation can be used to mediate the other
dependency relation. The one constraint which is ignored when visitors are
used to mediate other relatons is the order constraint since visitors are
used - by definition - when items have been "moved" from their normal
position,

Usually dependency relations are established between separate molecules
on the stack. Sometimes, however, they are established among sub-structures
within a single molecule. Such non-standard dependencies are always derived
from ecxisting dependencies. The Derivable part of the molecular structure
(see (11)) is reserved for rules which license derivable dependencies. (29)
expresses a general rule of WG.

(29) (visitor of word) is (post-dependent of word)

This rule is recorded (in slightly modified form) in the Derivable list.
The Derivable list is checked immediately after every bonding operation and
any new dependencies which can be derived from that bond are established.
Thus, since love requires an object (a kind of post-dependent) and it also has
a visitor, (29) derives the fact that the object of love is identical to the

- 312 -

visitor of love. This fact is recorded in the usual way in the Subordinates
list ([visitor, word-4, word-1) => [object, word-4, word-1]). The resuliing
structure is shown in (30).

/—\.
(30) The woman [love

Rules in the Derivable list are marked as optional or obligatory.
Clearly, (29) would be marked as opticnal since we would not want it 10
work in sentence (31) as it did in sentence (30). This parser is just as
susceptible to problems of ambiguity and indeterminacy as most other
available parsers.

(31) The woman I love to meet
WG analyses sentences like (31) by allowing the visitor relation to
“hop” down the dependency chain. The Derivable list contains ancther rule
like the one in (32).
32) (visitor of word) is (visitor of (complement of word))
This rule allows sentences like (33) to be analysed correctly. The

broken lines show intermediate visitor relations which led to the final
relation from word-8 to word-1.

s
(33) The woman I know you think I love

Hudson has presented arguments for a visitor analysis (1984:124ff;
1988). but he has not yet published any procedural explanations of how to
establish visitor relations in the first place. I would argue that the stack
configuration illustrated in (28) can be recognised easily and used to
establish the relation in one of the main cases where visitors are required.

39 Establishing double dependencies

We return to the problems raised by double dependency as exemplified
by (3) and (4). We can solve the problems by including in the grammar the
following propositions:

(34) i derived-subject isa subject
ii. (predicative of word) has (a derived-subject)
iii. (incomplement of word) has (a derived-subject)
iv. (derived-subject of word) is (subject of (head of word))

("Incomplement” is the name of the grammatical relation which links word
pairs (2,3), (3,4), (4,5) and (5,6) in sentence (4). For more details of this
analysis see Hudson, 1988).

- 313 -

Rule (34iv) can be built into the Derivable list at the time a word is
read and a new molecule is first constructed. It serves to establish the most
important and frequently occurring double dependencies and accounts for the
analyses of (3a-b) and (4).

3.10 Establishing interdependence

The bonding algorithm I have presented so far simplifies the facts in
assuming that once two words have bonded by means of some dependency
relation they will form a single molecule, thus effectively preventing them
from bonding with ecach other by means of some other dependency relation.
As we have seen from example (7), WG theory allows interdependence to
occur occasionally. It seems unlikely that this sort of problem is amenable to
the range of solutions provided by the Derivable list since interdependence
does not appear 10 be readily predictable from specific grammatical relations
or stack configurations. The most effective solution promises to be the
inroduction of an explicit interdependence checker which operates
immediately after every bonding operation. Unlike the other work presented
here, this idea has not yet been implemented.

i Implementation

The bonding algorithm has been unplememed in a prototype parser
written in the Prolog computer programming language and running on a Sun
3/52 workstation. The parser can analyse a wide range of English
constructions while maintaining consistently high levels of efficiency. The
stack-based algorithm ensures that the amount of work required to link two
words remains virtually constant (0.23 - 0.25 secs) regardless of sentence
length. In the protwotype a vocabulary of approximately 500 lexical items has
been used. Comparatively few lexical ambiguities have been included. In a
large-scale system including multple lexical ambiguities it is believed that
the parser would run in polynomial time, probably proporticnal to n'.
However, until such time as a formal proof can be worked out this result
must be regarded as tentative.

4, Word grammar parsing and categorial grammar parsing

A number of colleagues have commented on the apparent similarities
between the parser presented here and some existing Categorial Grammar
(CG) parsers (eg. Haddock, 1987; Pareschi, 1987). This should not be
surprising since CG can be regarded as the middle ground between
dependency and constituency grammar, incorporating insights from both. To
aid comparison we shall briefly review some similarities and differences
between the WG parser and most common CG parsers.

4.1 Similarities
We shall consider four main characteristics shared by the parsers.

i) Use of a parse stack;
i) grammar and lexicon are not distinguished;
ii) reductions are performed on the basis of information local to the

stack. It is not necessary to look up a grammar before reducing the
top two stack elements;

- 314 -

iv) syntactic analysis and scmantic interpreiation proceed left-to-right
incrementally (Ades and Steedman, 1982; Steedman, 1985).

(i) can not be regarded as significant since many parsers based on a
wide variety of theories - including constituent-based theories (Aho &
Ullman, 1972) - use parse stacks.

1 know of no phrase structure grammar which has carried lexicalism to
the lengths expressed in (ii). Of course, this is rightly a property of the
theories of grammar on which the parsers are based, rather than of the
parsers themselves.

(iii) can not be taken as seriously as it would have been several years
ago since an increasing amount of wark in phrase stucture parsing is being
based on the unification of complex feature sets - a move which results in
the increased localisation of information and control in parsing.

(iv) observes that WG parsers and CG parsers both permit incremental
analysis. This is made possible in CG by the use of the rule of function
composition (X/Y + Y/Z => X/Z). WG has no rule comesponding to
function composition. It succeeds in producing incremental analyses without
special machinery precisely because it does not make use of phrasal
constituents.

In the past, serious linguistic theories have failed to take sufficient
account of the agreement between psycholinguistic studies and the common
intuitions of hearers that interpretation proceeds incrementally (Marslen-
Wilson, 1975; Marslen-Wilson & Tyler, 1980). However, now that
incremental analysis is on the agenda it would be wrong to supposc that it is
a special property of CGs. Any phrase structure grammar can build structure
incrementally if analysis proceeds top-down. Even a bottom-up parser can
analyse incrementally if a left-branching grammar is used. It is difficult to
conceive of a sensible dependency grammar which could not be used to
build structure incrementally.

In conclusion it might be said that while CG parsers and the present
WG parser have a number of general properties in common, they share most
of these properties with many of their contemporaries based on phrase
structure grammar.

42 Differences

The most obvious and trivial difference between the parsers is that they
are based on different theories. There are numerous superficial differences
between WG and CG which are reflected in the parser:

. WG refers only to word-sized units, while CG refers directly to
phrasal categories as well as words.

. WG refers directly to grammatical relations between words, CG
does not.

. In most versions of CG the order of arguments relative to functions
is fixed. Thus the function X/Y takes an argument Y which occurs
to its right (Forward Applicaton: X/Y + Y => X), while the
function X\Y takes an argument Y which occurs to its left
(Backward Application: Y + X\Y => X). Direction of application is
built into the names of categories. In WG the relative order of

- 315 -

heads and dependents is listed as a property of the words and it
may be left unspecified if word order is free. (This problem can be
overcome in CG if directionality is separated from category labels in
much the same way as immediate dominance and linear precedence
have been scparated in Generalised Phrase Structure Grammar
(Gazdar et al,, 1985). This adds complications 1o the otherwise
elegant simplicity of CG).

. In some languages (eg. German) it may be necessary to say that a
word has a number of complements, all of which follow it but
whose order relative to each other is unimportant. In WG this can
be expressed simply by specifying the complements and their order
relative to the head but leaving their order relative to each other
unspecified. In CG it is extremely difficult to do this without

. proliferating categories, eg. (A/B)/C or (A/C)/B.

hd In case-marking languages (eg. Russian) word order can be
relatively free. This poses a problem for configurational formalisms
such as phrase strucrure grammar or CG. The formalisms give
special value to concatenation while the languages do not. What
these languages do is t0 make the dependency structure of clauses
explicit by means of case and agreement markers. This is exactly
the information which a dependency grammar expresses. WG and
CG differ, then, in expressing different kinds of structural
information. As Mel'¥uk points out, the main logical operation in
constituency-based grammars is set inclusion, while the main logical
operation in dependency-based grammars is the estblishing of
binary relations (Mel'tuk, 1988: 13-14). A neglected argument in
the constituency/ dependency debate is the fact that many languages
mark dependencies overtly in their morphology while no language -
10 the best of my knowledge - includes overt morphological markers
1o signal the boundaries of constituents. (Of course constituent
boundaries can sometimes be identified by virtue of the consistent
peripheral location of morphologically-marked heads within their
constituents but this is surely an artifact of a consistent head-first or
head-last dependency system and not the result of overt constituent-
boundary marking).

CG parsers can use a variety of rules to reduce the top two items on
the stack (function application, function composition, type raising), whereas
the WG parser has only a single reduction rule, namely the bonding rule.
However, it is allowed to take stack configurations into account and to
establish visitor relations and derived dependencies. CG parsers have nothing
which corresponds to these.

The discussion so far has proceeded as though there existed a single
undisputed version of CG. In fact there are many different versions currently
being advanced, some of which display very different properties indeed. The
variety which has atracted most attention and which seems to be making the
most adventurous claims is the combinatory categorial grammar (CCG)
developed by Mark Steedman and others (Steedman, 1987a). It is CCG
which has introduced function application and type raising to deal with the
kinds of constructions which involve “incomplete constituents”, eg.
coordination (Steedman, 1985; Dowty, 1987) and parasitic gaps (Steedman,

- 316 -

1987b). CCG makes use of the class of logical operations known as
combinators (Tumer, 1979). These can be used to define applicative systems
such as the lambda calculus without the use of abswaction or bound
variables. An interesting consequence of introducing combinatory rules is
that for most sentences there are many possible sequences of application and
composition which could generate exactly the same semantic structure. Thus,
it is possible 1o parse a sentence so as 10 produce many symtactic structures
but only one semantic structure. Left-to-right incremental interpretation is not
“built in" to CCG, rather it so happens that a lefi-branching tree can be
produced among a host of semantically equivalent trees for a sentence. This
problem of derivational equivalence or spurious ambiguity, which has no
correlate in WG, has obvious implications for the conswuction of CCG
parsers. Pareschi and Steedman (1987) suggest using a chant parser which
checks for semantic equivalence as well as syntactic identity before inserting
an edge in the chart. Hepple and Momill (1989) prefer 1o contract all
equivalent structures to a "normal form" during parsing. Wittenburg (1987)
tackles the problem in the grammar before parsing begins by deriving new
devices called "predictive combinators” from the existing ones. This
compiled version of the grammar is claimed not to produce spuricus
ambiguities. Other suggestions have been made and published contributions
to the debate continue to appear. But it is a literature which has no twin in
dependency grammar. The incremental interpretation of COG is bought at a
price - spurious ambiguity; the incremental interpretation of WG comes
free - because structure-huilding involves relating exactly two words directly,
without the need to build intermediate non-terminal category structures.

It may be observed that the similarities noted between CG and WG
parsers can be expressed at comparatively high levels of generality. In some
cases it may be said that they reflect not just similar approaches in the two
systems but general trends in contemporary linguistics. When we tum to
specifics however, we find that both CG parsers and WG parsers make use
of devices unique to themselves.

s, Conclusion

We began by considering some differences between phrase structure
grammars and dependency structure grammars. We went on to look in some
detail at the structure of a dependency parser based on the theory of WG
and it is clearly distinct from any current phrase stucture parser. CGs hold
the middle ground, having some features in common with phrase structure
grammars and other features in common with dependency structure
grammars. However, we saw that the dependency parser presented here had
a number of propenties which distinguished it from CG parsers. It may also
be observed that CG parsers deliver up what are effectively phrase structure
trees. We saw in section | that at least some of the analyses of current
dependency theories can not be mapped onto phrase structures.

Constituency and dependency are distinct notions. In highly constrained
formal systems they may coincide to the extent that a suucture expressed in
terms of one may be mapped onto a structure expressed in terms of the
other. The relaxation of constraints in order to write grammars for natural
language renders such mappings impossible. Consequently, constituency

- 317 -

parsing and dependency parsing must develop as autonomous disciplines,
each informed by the other but not dependent upon it.

Comparison of syntactic theories is a primitive art rather that an exact
science. The comparison of parsers based on different theories may provide
suggestive evidence to guide theory comparison. However, there exist few
truly effective formal procedures for evaluating and comparing parsers based
on the same theory, far less different theories. If the results of parser
construction or theory construction are to be quantifiable then a great deal
more work needs to be done on techniques of formal comparison in
linguistics.

6. References

Ades, AE. & MJ. Sieedman (1982) "On the order of words", Linguistics
and Philosophy, 4, 517-558.

Aho, AV. & J.D. Ullman (1972) i
ili : ing. Englewood Cliffs, NJ: Prentice-Hall.

Covington, M.A. (1988) "Parsing variable word order languages with
unification-based dependency grammar”. ACMC Research Report 01-0022,
University of Georgia, Athens, GA.

Dowty, D. (1987) "Type raising, functional composition, and non-constituent
conjunction”. In R. Oechrle, E. Bach, & D. Wheeler (eds) Categorial
. Dordrecht: Reidel.

Flickinger, D.P. (1987) "Lexical rules in the hierarchical lexicon". Stanford
University PhD thesis.

Fraser, N.M. (1985) "A Word Grammar Parser". MSc dissertation, University
College London.

Gaifman, H. (1965) “Dependency systems and phrase-structure systems"”,
Information and Control, 8, 304-337.

Gazdar, G. (1988) "The organization of computational lexicons”. CSRP 99,
School of Cognitive Sciences, University of Sussex.

Gazdar, G., E. Klein, G. Pullum & 1. Sag (1985) Generalised Phrase
Structure Grammar. Oxford: Blackwell,

Haddock, N. (1987) “Incremental interpretation and combinatory categorial
" "Edi " 4 < ’ or

ing, 71-84. Cenue for Cognitive
Science, University of Edinburgh.

Hays, D.G. (1964) ‘"Dependency theory: A formalism and some
observations”, Language. 40, $11-525.

- 318 -
Hays, D.G. (1966) "Parsing”. In D.G. Hays (ed) Readings in Automatic
Language Processing. New York: American Elsevier.
Hellwig, P. (1980) "PLAIN - A program system for dependency analysis and
for simulating natural language inference”. In L. Bolc (ed) Representation
and Processing of Natural Language. Munchen: Carl Hanser Verlag.
Hepple, M. & G. Mormill (1989) "Parsing and derivational equivalence”,
Proceedings of the Founth Conference of the European Chapter of the
Association for Computational Linguistics, Manchester. 10-18.
Hudson, R.A. (1984) Word Grammar. Oxford: Blackwell.
Hudson, R.A. (1986) “A Prolog implementation of Word Grammar”, Speech,
Hearing and Language: Work in Progress 2, Department of Phonctics and
Linguistics, University College London, 133-150.

Hudson, R.A. (1988) "Extraction and grammatical relations", Lingua 76, 177-
208.

Hudson, R.A. (forthcoming) “Recent developments in dependency theory™.
L. Jacobs. W Stemefeld. T. Vennemann & A. von Stechow (eds) Smn._An
] X ; search. Walter de Gruyer & Co.

Hudson, R.A. & W. van Langendonck (forthcoming) "Word grammar”. In F.
Droste (ed) Mainstreams in Linguistics.

Kunze, J. (1982) Auntomatische Analyse des Deutschen. Berlin: Akademie-
Verlag.

Jackendoff, R. (1977) X_Syntax: a swdy of phrase structure. Cambridge,
Mass.: MIT Press.

Langacker, R.W. (forthcoming) "Cognitive grammar”. In F. Droste (ed),
Mai in Linguistics.

Levelt, WJM. (1974) Formal Grammars in Linguistics _and
Psycholinevistics. Vol 1L _Applicat in lineuisic theary. The Hague:
Mouton.

Marslen-Wilson, W. (1975) "The limited compatibility of linguistic and
perceptual explanations”, Chicago Linguistic Society Parasession on
Functionalism, 409-420.

Marslen-Wilson, W. & LK. Tyler (1980) "The temporal structure of spoken
language understanding”, Cognition. 8, 1-74.

Mel'2uk, L.A. (1988) Dependency Syntax: Theory and Pracrice. Albany,
N.Y.: SUNY.

- 319 -

Pareschi, R. (1987) "Combinatory grammar, logic programming, and natuml
language processing”, Edi

, 85-114. Centre for
Cognitive Science, Umvemty of Edinburgh.

Pollard, C. & LA. Sag (1987) B
: . Stanford: CSLI.

Robinson, J.J. (1970) "Dependency structures and transformational rules”.

Language, 46, 259-285.

Sgall, P., E. Hajicova & J. Panevova (1986) The Mcaning of the Sentence in
m_&mmm_md_hnmnans_Aan Prague: Academia.

Shieber, S.M. (1986) i i ion-
Grammar (CSLI Lecture Notes, 4). Stanford: CSLI.

Starosta, S. (1988) The Casc for Lexicase. London: Pinter.

Starosta, S. & H. Nomura (1986) "Lexicase Parsing: a lexicon-driven
approach 10 synm.cnc analysis”. In M. Nagao (ed) &mmdmgs__gf_m;

'86), Bonn. 127-132.

Steedman, M.J. (1985) "Dependency and co-ordination in the grammar of
Duich and English”, Language, 61, 523-568.

Steedman, M.J. (1987a) "Combmators and grammars”. In R. Oehrle, E
Bach, & D. Wheeler (eds)
Stucnures. Dordrecht: Reidel.

Steedman M.J. (l987b) "Combmatory gramman and parasmc gaps y

30-70. Ccnue for Cogmnve Sc:ence.

University of Edinburgh.

Pareschi, R, & MJ Steedman (1987) "A lazy way to chan-parsc with

categorial grammars”, : £ 23th_Anoual
Ammnn.fnr.(‘&mnmnmal_hnmnm:.

Tumer, D.A. (1979) "A new implementation technique for applicatve
languages™, Software: Practice and Experience, 9. 31-49.

Valkonen, K., H. Jappinen, A. Lehtola & M. Ylilammi (1987) “Declarative
mode! for dependency parsing - a view into blackboard methodology”,

Association for Computational Linguistics, Copenhagen. 218-225,

Wmcnburg, K. (1987) "Predictive combinators: a mel.hod for efficient
processing of combinatory catcgonal grammar
. 73-80.

