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Abstract  
 

This paper argues against the complete elimination of logical introduction rules from 
the pragmatic inference system. To maintain the consistency of the inference system 
as a whole, which is meant to support one’s truth-based judgment over propositions, 
the inference system should have access to both introduction and elimination rules. I 
show that the inclusion of introduction rules in the pragmatic inference system 
neither overgenerates propositions expressed nor cause non-terminating inference 
steps. 

 
 
1 Free enrichment and alleged overgeneration 
 
According to Relevance Theory (RT for short, Sperber & Wilson 1986/95), 
reference assignment and disambiguation are not the only pragmatic processes 
involved in the recovery of propositions expressed by (or the truth-conditional 
content of) utterances. 
 
(1) a. Every presenter [in the pragmatics session of CamLING07] was 

impressive.  
b. John took out a key and opened the door [with the key]. Cf. Hall (2006) 

 
RT assumes that, given the linguistically provided information outside the square 
brackets in (1), the hearer can pragmatically add the contents given in the brackets 
when she recovers the proposition expressed (in appropriate contexts).1  

                                 
* I am grateful to Robyn Carston, Nicholas Allott and Alison Hall for reading (part of) drafts 

and making suggestions. They do not necessarily agree with the final version and all the mistakes 
and misconceptions in this paper are the author’s.   

1 More accurately, given the linguistic meaning outside the square brackets in (1) which the 
hearer can recover by decoding the semantic information encoded with the language expressions 
that the speaker used in the utterance, and given the context in which the utterance was made 
(which includes the speaker’s intention), the hearer can pragmatically enrich to the truth- 
conditional content of the utterance which includes the pragmatically added contents inside the 
square brackets in (1). Crucially, the hearer may enrich the meaning of an expression before she 
recovers the encoded meanings of the other expressions. For more details about free enrichment, 
see Carston (2002).        
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Stanley (2002) claims that this free enrichment overgenerates. Suppose the 
sentence in (2) is uttered in a context in which the propositions in (3) are available 
as contextual premises.2 Then, according to Stanley, RT wrongly predicts that the 
meaning of (2) can be enriched by conjoining it with the contextual proposition (3), 
deriving the proposition expressed in (4). Stanley himself does not literally identify 
this process as &Introduction, but for the purpose of this paper, let me identify this 
process as &I applied to (2) and (3a).3 The recovery of (4) in this way would give 
the hearer enough cognitive effect, because an application of MPP between another 
contextual premise (3b) and (4) would lead to the relevant conclusion John will not 
live long (= R). 
 
(2) John smokes. (= P) 
(3) a. John drinks. (= Q) 
 b. If John smokes and drinks, he will not live long. (= (P&Q)→R)  
(4) John smokes [and drinks]. (= P&Q) 
 
Addressing this criticism, Hall (2006: 95-96) follows Sperber & Wilson 
(1986/1995) and postulates Conjunctive Modus (Ponendo) Ponens (CMPP) as in 
(5). With CMPP, one can derive the relevant conclusion, John will not live long (= 
R), without applying &I. 
 

(5) Conjunctive Modus Ponens: 
 1. (P&Q)→R   Premise 1 
 2. P      Premise 2 
 3. Q→R    1, 2, CMPP 
 4. Q      Premise 3 
   5. R      1, 2, 4, MPP 
 
In her solution to the alleged overgeneration problem, Hall suggests a weaker claim 
that because of CMPP, the hearer does not have to use &I in order to derive the 
relevant conclusion John will not live long. Thus, the hearer can derive this 

                                 
2 My example sentences are overloaded with different kinds of information. They may represent 

sentences uttered, linguistic meanings or propositions, where propositions may be trivial, 
expressed or contextual (though in my views, trivial ‘propositions’ do not acquire propositional 
status until they are recognized as propositions expressed (but then they stop being trivial 
anymore). For example, (2) may represent the sentence uttered, but when it is identified with P, it 
represents a proposition.    

3 I make this assumption because the main argument of this paper is that inclusion of &I in the 
spontaneous inference system at the basic level neither leads to overgeneration with enrichment  
nor leads to infinite inferences. Reviewing what Stanley really meant in his overgeneration claim 
and arguing against it is not part of this paper’s aim.  
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conclusion as in (5), without deriving the undesirable (4) as the proposition 
expressed by (2).  

However, with this weaker claim, to prohibit the derivation of (4) as the truth 
condition of (2) in any instance of interpreting (2) in context, one would need some 
additional explanation why the hearer always uses the inference steps as in (5) 
rather than the application of &I followed by MPP, when free enrichment is 
involved.4  

In this paper, I argue that introduction rules can be used in pragmatic inferences 
in general. Thus, after showing that it is problematic to eliminate the &Introduction 
rule from the pragmatic inference system in section 2, I provide an explanation 
about why &I is not used in enrichment in section 3, though the pragmatic 
inference system itself is equipped with this rule. I also argue that CMPP is only a 
convenient shorthand for a particular combination of inference steps, rather than an 
actual inference rule defined over logical connectives.   

The stronger interpretation of RT’s proposal5 is that spontaneous inferences do 
not use (logical) introduction rules at all (and thus, (5) is the only way of deriving 
the conclusion R, given (2)~(3)). The reason for postulating this stronger 
hypothesis is not only the alleged overgeneration of propositions expressed by way 
of free enrichment. Sperber & Wilson, among others, argue that spontaneous 
inference should not have access to introduction rules because, otherwise, the 
system would generate infinite or non-terminating inferences. In section 4, I briefly 
explain this infinity problem and then show that the problem is not caused by the 
use of introduction rules in the system, and thus eliminating &I or other 
introduction rules is not the right way of coping with this problem. Section 5 shows 
some proofs to support my arguments. Section 6 deals with some loose ends and 
comments about use of logic in pragmatics from a general viewpoint. Section 7 
provides concluding remarks.   

This paper is based on certain theoretical assumptions. When we say that an 
inference system is incomplete with regard to the intended semantics, the ‘intended 
semantics’ does not mean the semantics of the inference data that the system aims 
to explain. It means the system-internal semantics that the person who proposes the 
system must define or provide for the language representations that are manipulated 

                                 
4 For some explanation that Hall suggests about why CMPP is preferred to &I followed by 

MPP, see Hall (2006: 96).    
5 Sperber & Wilson explicitly rule out introduction rules from the inference system. Thus, 

strictly speaking, what I call the stronger claim is the only possible interpretation of their 
proposal. On the other hand, they carefully avoid any modification of the logical system which 
may potentially underlie their inference system. Thus, it is theoretically possible to interpret their 
claim as the weaker one, in which we can use & with restrictions for purely application reasons, 
such as efficiency of inferential processes, even if that is not what Sperber & Wilson had in mind 
as a possibility.   
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in the system. When a deductive system is proposed, both the syntactic rules that 
define the well-formed syntactic objects (i.e. propositions in propositional logic) 
and the syntactic inference rules which operate over those syntactic objects (such as 
MPP, &I, &E etc.) must be presented, but that is not enough. It must also be 
specified how those syntactic objects and inference rules are intended to be 
interpreted. Moreover, such intended ‘denotation’ of syntactic objects and rules 
must be modelled in a well-defined semantic structure, such as the Boolean lattice 
for the classical propositional logic.6 The ‘completeness’ of an inference system 
with regard to the intended semantic is a matter of checking (or ‘proving’) whether 
the syntax and the semantics match up completely in the proposed system, where 
both of these are system-internal concepts. Let me elaborate a little on this point 
with informal schemas. 
 

(6) a. Syntax:  {…,φ1,…, φn,…} ���� {…,ϕ,…}          

 b. Syntax simplified: φ1,…, φn ����� ϕ  

   c. Semantics:  ||φ1||M,…, ||φ1||M 
� ||ϕ||M  

 
In classical propositional logic, the syntax derives a set of propositions from a set 
of propositions, as shown in (6a) (CLP abbreviates Classical Propositional Logic). 
For the sake of simplicity, however, let me discuss the syntactic derivability as if 
we derived a proposition (rather than a set of propositions) from a set of 
propositions, by getting rid of ‘irrelevant propositions’ (indicated by … in (6a)) 
which do not play an essential role in the inference that we discuss at each stage.7 
That is, as shown in (6b), the proposition ϕ is syntactically derivable from 
propositions φ1,…, φn (I also omit the set notation, {⋅}, in the Antecedent to the left 

of ��as well). This syntactic derivation is solely dependent on the set of syntactic 

                                 
6 The word ‘denotation’ may be misleading to linguists, because linguists tend to assume that 

denotations are some concrete objects in the world, but that is not necessarily the case. Functions 
from possible worlds to sets of individuals, for example, might be denotations of some logical 
expressions (such as predicates). Whatever one assigns as the (intended) interpretations of 
syntactic objects count as ‘denotations.’       

7 As we see in section 4, a problem of the ‘impure’ definition of ∨I is that as well as it 
introduces the truth functional connective, it recovers one of these ‘irrelevant propositions’ from 
the background (i.e., {…}) and put it in a noticeable place. This latter operation is structural 
weakening in the Succedent and because structural weakening exists independently ∨I, solving 
the (infinity) problem by controlling the application of (impure) ∨I is not only in the wrong track, 
it does not completely solve the problem, either, as we see in section 4. The same applies to &I in 
the Antecedent side with regard to the ‘impure’ left rule in Gentzen sequent presentation, as in the 

inference from p � p to p&q � p, which has incorporated structural weakening in the Antecedent.  
In contrast, the pure &I in (16a) abstracts away from the structural weakening. See section 5.    
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derivation rules which include &I, &Elimination, MPP (= →Elimination) etc. Now, 
in order for the system to be used in application, defining such syntactic rules is not 
enough. We have to define the semantic interpretation rule that interpret both the 

syntactic objects (such as φ1,…, φn, ϕ) and the syntactic derivability relation ����Let�

��represent the interpretation of the syntactic derivability �� This semantic relation 

�� is harder to explain without introducing formal details, and I only make an 
informal presentation.8 It informally means that for all the models M in which 
||φ1||M,…, ||φ1||M are all 1 (or True), ||ϕ||M is also 1. This semantic computation is 
based on the standard interpretation of the logical connectives, &, ∨ and → in terms 
of the truth tables. Or one may use the equivalent truth-condition presentations for 
the connectives, such as, for all models, M, ||φ1&φ2||M=1 if and only if ||φ1||M=1 and 

||φ2||M=1 as the semantics of &, etc. Now, because this semantic relation �� applies 
generally, independent of the verdict of the syntax, if we assume that p, q and p&q 
are all well-formed formulas in the language that the inference system uses, then 

the semantics validates the argument, ||p||, ||q|| �� ||p&q|| (the reader can check the 
validity by drawing truth tables, for example), even if we eliminates &I from the 

syntax and we can no longer ‘syntactically’ derive the sequent p, q ��p&q. Thus, 
the truth-based semantics above would validate an argument that the syntactic 
system without &I (but which still makes use of the form φ1&φ2 as a well-formed 
formula and which still uses &E and all the other elimination rules) can no longer 
support. This syntax would then be incomplete with regard to the suggested truth-
based semantics.  

The main part of this paper is just an elaboration of this incompleteness argument 
against the syntax without &I, relative to the ‘truth-based’ semantics as was 
sketched above, but let me concentrate on the formal status of the semantics I have 
just sketched. As I said above, this semantics is independent of the syntactic rules 
(that is why some arguments may be validated without the syntax being unable to 
support them). On the other hand, it is still part of the language system in two ways. 
First, any logical language without the provision of such a formal semantic 
structure as the one given above is not complete as a system. Without the intended 
semantics, the syntactic objects and rules may potentially be interpreted in different 
ways and thus the proposed syntactic system cannot be rigorously evaluated in 
terms of what it can do in application. Second, it is the intended semantics that is 
comparable to the data. The impression that one can compare the syntactic rules 

                                 
8 Wansing (1993), among others, interprets a proposition, p, as the set of information states in 

which p is true. Then, given additional rules to interpret connectives, such as &, ∨ and →, the 

semantic relation ��corresponds to the subset relation in set theories. This interpretation creates 
the Boolean lattice structure as the intended semantic structure.   
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directly to the inference data is illusory: one gets that impression because one has 
already assigned some arbitrary (or the ‘most natural’) interpretations to the 
syntactic rules. Because of these, any theory that makes use of some language in 
presentation should provide a precise definition of the intended semantics. Whether 
the intended semantics actually corresponds to the semantics as in the data is a 
separate issue. If it turns out that some system is incomplete with regard to the 
intended semantics, then it simply means that the system does not work in a 
complete way system-internally.   

Having said that, because I am mostly concerned about ‘truth-based inferences’ 
of the spontaneous inference system, and because classical logic (which I claim to 
be essentially the same as one’s spontaneous inference system at the basic level) is 
sound and complete with regard to the Boolean semantics as I sketched above (or, 
more accurately, the Boolean lattice structure as in footnote 8), I implicitly assume 
that the ‘intended semantics’ of the spontaneous inference system is simply the 
standard Boolean semantics, where the derivability in the syntactic derivation 
schema, φ1,…,φn  ϕ, is interpreted as the semantic validity argument such that, 
for all the models in which φ1,…,φn are true, ϕ is also true, as shown in (6).9 This is 
convenient, because, as I said above, classical logic is generally complete with 
regard to this ‘truth table’ semantics on the one hand, and the truth-table semantics 
is in close correspondence to one’s truth-based judgments over propositions in on-
line inferences on the other hand. Thus, by using the Boolean semantics as the 
intended semantics, we can mostly ignore the difference between the intended 
semantics of the deductive system and the semantics that models the actual 
interpretation. Because of this, in this paper, I am often careless about the 
distinction between the intended semantics of the inference system and the 
semantics of the inference data. In this way, I aim to show that the stronger claim 
made by RT (as well as some other systems that eliminate introduction rules from 
the inference system) is problematic form both theoretical and applicational 
viewpoints.   

Finally, I assume that the pragmatic inference system has properties of ‘deductive 
systems’ at the basic level. In other words, I assume that all the rules in the system, 
including the syntactic rules, the interpretation rules, and the relation(s) over 
semantic objects in the intended semantics, apply with their full generality. One 
might define additional rules in the syntax to explicitly control the application of 
some syntactic rules (such as &I), but then one would also have to provide the 

                                 
9 I mostly ignore the semantics of sub-sentential expressions in this paper, because the main 

topic of this paper is truth functional connectives. See footnote (31), though.   
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intended semantics for those additional rules, to show that the restrictions in terms 
of those additional rules really work in the intended way in the semantics.10     

 
   

2 Problems of eliminating &I from the pragmatic inference system 
 
In this section, I discuss some of the problems of eliminating &I from the 
spontaneous inference system. First, if truth-based judgment is at least part of one’s 
spontaneous inference ability, then the inference system without &I become 
incomplete with regard to the intended semantics. Also the system uses a rule (that 
is, CMPP) which the syntactic rules of the connectives involved in that rule do not 
support. In other words, the system adds an additional theorem which is not 
supported by the rules of the logical connectives that are manipulated in the 
theorem. Thus, the inference system fails to be fully deductive.    
 
(7) a. p, q, (p&q)→r  r    
 b. p&q, (p&q)→r  r   
 
Consider the two sequents (or the two ‘arguments,’ if we see them from a semantic 
viewpoint) in (7a) and (7b). The two atomic propositions p and q on the one hand 
and one complex proposition (p&q) on the other have the same truth-based 
interpretation in the antecedents of the sequents.11 If the inference system cannot 
make use of &I, one cannot syntactically explain the same role that these formulas 
play in truth-based interpretations. Without &I, the syntactic system can still derive 
the entailment relation from (p&q) to p, and from (p&q) to q via &Elimination but 
that is not complete with regard to the truth-based semantics.12 Thus the validity of 
(6a) cannot be explained without &I, and the stronger claim by RT requires CMPP 
as an essential rule, as has been discussed already.             

                                 
10 Note that there is asymmetry between the syntax and the semantics throughout the rule 

formation in the language system. That is, when we control some rule applications, we must first 
specify the control in the syntax, and then define the interpretation of such control in the 
semantics. The control in the syntax must be sound and complete with regard to the intended 
semantics so that the control can really work in the intended way.   

11 I do not show a minimal pair in the other direction. That is, in addition to (7), evaluation of 

the validities of a pair of sequents such as, i) p, q, p→(q→r) � r and ii) p&q, p→(q→r) � r, would 
be necessary to show the equivalence of the roles of 1) p, q and 2) p&q, in an antecedent of a 
sequent. I omit such a pair because one can prove them only with MPP and &E.     

12 See section 6.1 for further remarks about my recognition of the truth-based semantics as (part 
of) the intended interpretation of the inference system. I add some comments about Braine and 
O’Brien’s ‘procedural’ semantics in section 6.3.       
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However, the reason why CMPP’s successive application of (p&q)→r to p and q 
separately in (5) does not cause a problem for the inference system as a whole is 
the logical equivalence relation in (8). The proof of this equivalence requires &I, as 
well as &Elimination (&E).13  

 
(8) (p&q)→r  p→(q→r) 
   
Imagine a logical system with &E but without &I, and call it CPLe. (7a) is not 
provable in CPLe. Now, imagine that we add CMPP to CPLe and call the resultant 
system RT. Then, (7a) is provable in RT. Because RT is equipped with MPP 
(which is an ‘elimination’ rule of → and thus, would be preserved in RT), (7b) is 
also provable in RT. If we want to maintain congruence (cf. footnote 21) and 
transitivity of the system, which are both essential for a fully deductive system, 
then, there should be some path from p, q separately to p&q as one formula, 
whereas RT is lacking in this path, that is, &I. Thus, the system fails to be fully 
deductive.14 To make my arguments clearer, let me review the inference in (7a), 
and consider how the stronger claim by RT would relate this inference to the 
inference in (7b) and how the inference system without &I would syntactically 
recognize the semantic equivalence between 1) p, q as separate propositions on the 
one hand, and 2) (p&q) as one complex proposition on the other, in the antecedent 
of a sequent in the truth based semantics.15 Suppose that the inference system were 
lacking &I (as in the stronger interpretation of RT’s proposal). Then, the inference 
system would not recognize (7a) as a derivable/provable sequent via &I. However, 
suppose that this hypothetical inference system were equipped with CMPP instead. 
Then, a person using this inference system could tell that (7a) is a derivable 
sequent. Next, the person equipped with this inference system could compare the 
inference in (7a) to another inference in (7b) which her inference system can 
recognize as derivable, too, but this time by using MPP. Now, she notices that the 
pair p, q and the complex formula (p&q) are replaceable with each other in the 

                                 
13 See the proofs in (23) in section 5.   
14 In a sense, RT is comparable to a hypothetical Combinatory Categorial Grammar system 

which insists that they can use function composition without abstraction rule (N.B. function 
composition as a higher order theorem is derivable from abstraction and association as axioms). I 
do not investigate whether we can preserve the deductive nature of the inference system without 
&I but with CMPP by decomposing CMPP into some axioms in a ‘modular’ system as is sketched 
in section 6.1 and 6.3. My guess is that there is not a lot of promise. Controlling structural 
associativity in a multi-modal deductive system is easy because structural rule neither introduces 
nor eliminates connectives such as &, ∨ and →. In comparison, restricting the use of &I with 
presence of &E even in one mode would cause a problem to the deductive system. I leave further 
investigation about this point for another paper.  

15 Again, I show the recognition of the equivalence relation in one direction only.   
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antecedent of an otherwise equivalent sequent (that is, 7a and 7b are identical 
except for p, q and p&q) and this replacement does not change the validity of the 
argument. To the degree that the person using this system finds that this is almost 
always the case, she can reflectively recognize the semantic fact that p, q on the one 
hand, and (p&q) on the other, have the same (truth-based) interpretation in the 
premise of a sequent.16 However, the hypothetical inference system that she is 
equipped with is still lacking a direct way of supporting this semantically valid 
inference, because it is lacking &I. Instead, the inference system would recognize it 
indirectly, as I have shown above.   

I do not find a convincing reason to explain our intuition about the valid 
argument in (7a) and its relation to another valid argument in (7b) in this indirect 
way (or in this reflective way). In an informal (truth-based) semantic inference, the 
conditional (p&q)→r requires both p and q to be true (as the standard truth table 
shows) in order for r to be true, but that is exactly how the propositions p and q are 
interpreted in the premise of an inference, and thus one can semantically conclude 
that r is true. The rule &I in classical logic is postulated just to support this 
semantic judgment, and the inference system as a whole should be equipped with it, 
in order to make the system complete with regard to this semantic inference.  

As I explained above, one can see this incompleteness issue in terms of 
replacement possibilities between (sets of) propositions. Whenever p, q on the one 
hand, and (p&q) on the other, appear inside the otherwise identical set of premises, 
RT can explain why the result of the inferences are the same only in an indirect 
way. Thus, for all the other cases in which our semantics tells us that the choice 
between 1) φ, ϕ and 2) φ&ϕ in the premises of an argument does not influence its 
truth-based validity, 17  RT would require some rules analogous to CMPP. For 
example, consider the semantically valid argument, p, q, ¬(p∧q)∨r r. RT without 
&I would require another rule analogous to CMPP to support its validity. The fact 
that ¬(p∧q)∨r and (p∧q)→r are inter-derivable in classical logic does not help, 
because, without any introduction rules, the RT inference system cannot recognize 

them as equivalent (again, without adding another formation rule such as p→q �	 
¬p∨q whose addition to the system would further spoil the deductive nature and 
completeness of the system without introduction rules for truth functional 
connectives).  

                                 
16 This is not always the case, because of the sequents, i) p, q 
 p&q and ii) p&q � p&q  in 

RT’s system. But this case is trivial in the current argument, because i) is exactly the sequent that 
RT claims that one needs to exclude. Again, I argue that i) should be maintained and i) does not 
do any harm in its application in spontaneous inferences.    

17 Carson (p.c.) claims that it is not clear why this is something that the spontaneous inference 
system should be expected to explain. See section 6.4 for this point.         
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In a similar way, RT might need an additional axiom to deal with the following 
case.18 Consider the set of premises P1={p, q, (p&q) →r, ¬r}. How would RT 
without &I but with CMPP deal with this premise set? As one possibility, RT can 
first apply CMPP between p and (p&q)→r, concluding q→r, to which RT can 
apply MPP with q, deriving r. Then, RT would get an inconsistent set of premises 
{r, ¬r} from which RT would conclude a contradiction that is, ⊥. Thus, following 

this first route, the inference system would derive, p, q, (p&q)→r, ¬r ����⊥. 
Alternatively, starting from the premise set P1, RT can first apply MTT between 

(p&q)→r and ¬r, concluding ¬(p&q). Then the resultant premise set would 
become P2={p, q, ¬(p&q)}. Now, in terms of the truth based semantics, the three 
propositions p, q, ¬(p&q) cannot be all true in any model. Therefore, P2 should 
semantically lead to a contradiction. However, RT cannot syntactically derive a 
contradiction from P2, because RT is not equipped with &I. Thus, following the 

second route from P1, RT’s verdict is p, q, (p&q)→r, ¬r 
��� ⊥. Comparing the 
two inference-routes starting from the same premise-set P1, we might argue that the 
verdicts of the RT’s spontaneous inference system is inconsistent, as well as 
pointing out again the incompleteness of the inference system with regard to the 
intended semantics (i.e. the verdict of the second route means that there should at 
least be one semantic model in which all the four formulas p, q, (p&q)→r, ¬r are 
true, whereas, as the reader can easily check by drawing a truth table, there does 
not exist such a model).   

Allott suggests that maybe RT would get rid of MTT from the inference system, 
but as far as the treatment of the premise set P1 is concerned, I am not sure if that is 
the route they would take. RT would have to deal with the premise set P2 anyway. 

Thus, RT might define another axiom to derive the sequent, p, q, ¬(p&q) � �� ⊥. 
Again, addition of such an axiom that is not supported by the basic rules for the 
connectives involved in the axiom would spoil the deductive nature of the inference 
system.19     

                                 
18 Nicholas Allott (p.c.) suggested this case to me. Though I use the set of premises and the 

basic line of arguments that Allott provided, my analysis may differ from his.     
19  As I implied in the introduction, I do not have a strong view about the claim that the 

spontaneous inference system is not deductive at all. If that was the case, most of my arguments 
against a spontaneous inference system without introduction rules would become irrelevant. 
However, given the productivity of spontaneous inferences, and also given the more than 
superficial similarity between the logical systems as are investigated by proof theorists and the 
inference systems that are investigated by psychologists or more empirically minded 
linguists/philosophers, I do not think that we have to accept the split between the two types of 
logical systems at the foundational level, rather than at the level of application.    
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I have shown some reasons not to eliminate &I from the inference system. Now, 

should we still preserve CMPP in our spontaneous inference system? If the system 
is equipped with &I, we do not need CMPP as an inference rule. However, because 
of the equivalence of the two formulas in (8), one may still use CMPP as a 
shorthand for a set of inference steps in application. That is, given (8), applying 
(p&q)→r successively to p and q does not cause any problem to the inference 
system as a whole, based on the basic property of the logic in which replacement of 
a sub-formula in a sequent with a logically equivalent formula does not influence 
the provability of the sequent.20 Analyzing interpretation data is beyond the scope 
of this paper, but to the degree that data suggest that one may use the inference step 
as in CMPP, we can still treat CMPP as a shortcut in application.  
 In this section, I have shown that the inference system cannot recognize the 
truth-conditional equivalence between certain propositions without &I. Though 
truth-based arguments are not the only kind of arguments that the spontaneous 
inference system is intended to support, as long as such semantic arguments are at 
least important in spontaneous inferences, failing to support them at the basic level 
of the system compromises the explanatory power of the system as a theoretical 
tool. In terms of congruence,21 RT’s stronger claim can cause situations in which 

                                 
20  Sperber & Wilson (1986/1995: 99-100) argue that the rule of CMPP is psychologically 

plausible in terms of the maximization of the usefulness of the new information that one gets in 
spontaneous inferences (see also Hall 2006: 96). Roughly speaking, when one has the proposition 
in the form of (P&Q)→R as one premise, the possibility of finding P and Q separately as other 
premises is greater than finding P&Q together. I reserve my view to this point in terms of 
probability. In terms of efficiency, however, processing one premise after another makes some 

sense. To support that point, the proof of the sequent P, Q, P→(Q→R) � R is algorithmically less 

complex than the proof of the sequent P, Q, (P&Q)→R � R, in terms of the complexity measure 
based on the number of connectives involved in the proofs (i.e. the latter proof includes the 
introduction of & to conjoin P and Q which increases the complexity of the proof by one). Thus, 
if one can automatically interpret (P&Q)→R as P→(Q→R) during a spontaneous inference given 
the availability of P at that stage of the inference, then the deductive steps that use CMPP will be 
less complex than the steps using &I, followed by MPP (N.B. the former inference steps would 
not really derive P→(Q→R) from (P&Q)→R, rather, given the availability of P, one can apply 
(P&Q)→R directly to P, whereas the logical equivalence between (P&Q)→R and P→(Q→R) as 
shown in (23) justifies this successive application of (P&Q)→R to P and Q. So the inference steps 
will be exactly like (5), though in our system, with a formal underpinning from the basic logical 
system). The point is that my analysis is totally compatible with the use of CMPP as an 
application shortcut (CMPP is a higher order theorem that is provable from the basic axioms), and 
it can also show the efficiency of the spontaneous inference steps using CMPP.       

21 Informally, for all X, Y. X is congruent with Y (in the antecedent of a sequent) iff, for all Z1, 

Z2, W. [(Z1, X, Z2 � W) ⇔ (Z1, Y, Z2 ��W)] (where X, Y, Z1, Z2 are meta-variables for sets of 
propositions, and commas between such sets represent the set-union ∪). That is, X and Y are 
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one may replace a pair of propositions with a (complex) proposition without 
influencing the provability of the sequent, but in which one cannot derive the latter 
from the former directly. This corresponds to the incompleteness of the syntax with 
regard to the Boolean semantics, but seen from a different viewpoint, we could also 
say that the syntactic system uses a rule (i.e. CMPP) which is not supported by the 
basic rules of the connectives involved (that is, the rules for & and → but without 
the introduction rules). This spoils the deductive nature of the inference system.      
 
3 Alleged over-generation by way of enrichment 
 
In this section, I show that RT does not have to eliminate &I to prevent the alleged 
overgeneration via free enrichment.  

In propositional logic, &I requires as premises two formulas that can be assigned 
truth values, as is informally shown in (9). 

 

(9) a. Syntax:  p, q  �&I  p&q 
 b. Semantics: If ||p|| = True and ||q|| = True, then it follows that ||p&q|| = True. 
 
Because of this, if one also assumes that the proposition expressed is the first 
meaning representation that the hearer derives out of a language expression to 
which the hearer can assign a truth value (in context),22 it follows that &I (or 
introduction rules for any truth functional connectives) cannot be used in the 
derivation of a proposition expressed.23 Consider (2)~(4) again. Propositions in (3a, 
b) as contextual assumptions are fully propositional on their own. On the other 
hand, the semantic content of the sentence in (2), which is uttered by the speaker, 
acquires a fully propositional status only after it is recognized as the proposition 
expressed by that utterance. Thus, one can conjoin (2) with (3a) via &I only after 
recognizing the semantic content of (2) on its own24 as the proposition expressed.25 

                                                                                                      
congruent in the antecedent iff for no sequent, replacing one with the other in the antecedent 
influences the provability of the sequent.   

22 I stipulate that the hearer does not assign a truth value to a minimal proposition. This does not 
prohibit the hearer from evaluating a minimal proposition or a trivial proposition in the recovery 
of the proposition expressed. See the end of this section.    

23 Sperber & Wilson explicitly make their mental logic operate over some non-propositional 
representations, so we have to do some more work to apply this criteria to their system. See 
section 6.1.    

24 This is inaccurate because one may enrich the semantic content of (2) before applying &I or 
any other rules for truth functional connectives. Either the literal meaning of (2) or the result of 
enrichment based on it can enter into &I with (3a). But such enrichment cannot include rules of 
truth functional connectives because of the semantic requirements of those connectives, plus the 
assumption that the semantic content of (2) does not become truth evaluable just because the 
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Assuming that the hearer may derive only one proposition expressed per utterance, 
it follows that (4) cannot be the proposition expressed by the same utterance of the 
sentence in (2). Note that in this explanation, one does not need CMPP as an actual 
logical inference rule. CMPP might still be used to describe an on-line inference 
step that arises as a result of routinization of certain logical inference steps in 
application. But use of CMPP does not spoil the fully deductive nature of the 
inferential system as a whole, either. With &I, the system can recognize the 
equivalence between the role of the two premises p and q separately, on the one 
hand, and the role of (p&q) as one complex premise, on the other.   

I stipulated that one can apply introduction rules for truth conditional connectives 
only after one enriches the meaning of the overtly used expression to the 
proposition expressed. As well as its role in keeping the inference system sound 
and complete with regard to the intended semantics, the assumption is supported by 
the semantic claim that nothing that the hearer recovers from the language 
expression during the process of deriving the proposition expressed needs to enter 
into truth based inferences (other than the proposition expressed itself). For 
example, if the hearer does not see the literal meaning of John drinks as relevant 
enough in the context of an utterance, she does not need to assign a truth value to 
the proposition that corresponds to that literal meaning (and she does not have that 
proposition enter into truth based inferences). She only has to assign a truth value 
to the proposition that she takes as being expressed, say, “John drinks alcohol,” for 
example. Thus, from some sort of economy consideration, I assumed that the 
speaker does not assign a truth value to a proposition unless she either sees it as the 
proposition expressed or it is one of the contextually available propositions (which, 
because of the roles that contextual premises play in inferences, should be assigned 
a truth value by definition). However, the proposal would have a problem if one 
had to apply a truth based logical inference rule to a propositional representation 
that has not yet been accepted as the proposition expressed in other well-attested 
cases. Some might argue that ‘trivial propositions’ as in (10) are such cases.   
 

                                                                                                      
semantic content of it is type t expression (or, informally, just because what is uttered is a 
‘sentence.’        

25 Hall (2006) postulates two kinds of pragmatic inferences, local inferences that are applicable 
to sub-propositional expressions, and global inferences that apply only to fully propositional 
expressions. Allott (p.c.) suggests that this division might inherently be present in Sperber & 
Wilson (1986/1995). One can regard my proposal in section 2 as one interpretation of this 
division between two kinds of inferences.   
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(10) a. John has a brain.  
   (uttered to express the proposition, John is smart.)   
 b. Meg is human.  
   (uttered to express the proposition, Meg may make mistakes, etc.)   
 
An argument against my proposal above would be that, in order to derive the 
propositions expressed (e.g., the ones provided in the parentheses in (10a) and 
(10b)), the hearer has to evaluate the literal meanings of (10a) and (10b) as trivially 
true propositions. Some might argue that such evaluation involves truth based 
inferences.  

However, (10a) and (10b) do not pose a problem for my proposal. To recognize 
the literal meanings of (10a) and (10b) as trivially true, one does not have to apply 
proper logical inference rules. In other words, to recognize them as trivially true, 
one does not have to have the trivially true propositions interact with other 
contextual assumptions in terms of logical inference rules.26 To explain this point, I 
first evaluate an application of &I from semantic viewpoints and then come back to 
inferences involved in trivial proposition cases. In the case of &I, what the 
semantics of & conjoins is a pair of truth values. Thus, one must know the truth 
values of P and Q in order to compute the truth value of P&Q. But before P and Q 
are accepted as propositions expressed or unless P and Q are contextual 
propositions (which are by definition fully propositional), one cannot decide on the 
truth values of these propositions.  

Because semantic validity arguments (e.g., for the provable sequent P, Q � P&Q, 
the semantic argument will be, for all the models in which P and Q are true, P&Q 
is also true) abstract away from the choice of a model, some might argue that one 
does not really need to assign truth values to all the premise propositions of an 
inference rule for a truth functional connective. They might argue that the choice of 
a model (which will correspond to the context of the utterance in question) is 
irrelevant even in inferences for truth functional connectives and thus, one does not 
need to assign truth values to the premise propositions in such inferences. 
However, quantification over models presuppose the truth evaluability of each 
proposition in any of those models, and if one cannot see some bit of the decoded 
meaning as truth evaluable in spontaneous inferences, one may not use that bit as 
an input to a truth functional inference rule, such as &I. Thus, though there are still 
some speculative elements in my proposal, I assume that use of proper classical 
logic inference rules in spontaneous inferences requires the full truth evaluability of 

                                 
26 Such propositional interactions prior to the recovery of the propositions expressed are not 

necessary even when the literal meanings of (10a, b) are recognized as being informative enough 
and are accepted as propositions expressed. Contextual premises, plus the linguistic meanings of 
the relevant expressions, will provide enough clues without such interactions.    
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all the premise propositions. In use of &I in a spontaneous inference, one has to see 
“John has a brain” (for example) as the proposition expressed, before one uses it as 
a premise of &I.   

In comparison, let me examine a case of a trivial proposition in more detail. 
Nicholas Allott (p.c.) claims that, to see that (a) “John has a brain” is trivially true, 
one would need to retrieve or construct (b) “John is human” and (c) “Humans have 
brains” and let the three propositions interact somehow. However, there is a crucial 
difference between this sort of inference on the one hand, and inferences for truth 
functional connectives (or any inference rules which have properly corresponding 
rules in classical logic) on the other. For presentation reasons, let me change the 
proposition (c) into a different form, that is, into (c′) “For all individual x, if x is 
human, x has a brain.” In Allott’s example above, (a) is the semantic content of the 
language expression uttered27 (i.e., John has a brain), whereas (b) and (c′) are 
contextually available propositions which the hearer may use as premises of an 
inference rule. Because (b) and (c′) are full propositions (i.e. fully truth evaluable) 
by definition, the hearer may apply MPP between them and conclude (d) “John has 
a brain.” Because the literal meaning of the utterance, that is, (a), is the same as (d) 
(in the role that it can play in truth based inferences), the hearer decides not to take 
(a) as the proposition expressed, and thus does not assign a truth value to (a) (or 
more accurately, the hearer does not take the proposition “John has a brain” as the 
proposition expressed by this particular utterance of the sentence John has a brain). 
Note that this process does not require an assignment of a truth value to the 
semantic content, John has a brain which one presumably derives as the result of 
the linguistic decoding. What is required instead is the recognition that this literal 
semantic meaning and the contextually derived proposition (d) are the same,28 and 

                                 
27 One could call “John has a brain” a proposition even though it is judged to be trivial for 

whatever reasons, rather than the ‘semantic content’ of the sentence, because this proposition 
exists independently of the English sentence, John has a brain. However, because trivial 
propositions are the cases in which the hearer does not judge such a proposition as the proposition 
expressed by the utterance (and thus does not accept it as the proposition for the utterance, in my 
analysis), I do not use the word proposition for (a) here, to avoid unnecessary confusion. In order 
to be complete, I should consider all the different reasons why such propositions are judged to be 
trivial, relative to the language expressions used in the context. For lack of space, however, I 
leave such a complete exposition for another paper.  

28 To be complete in my arguments, I would need to show case by case that this identification 
process actually does not involve any use of logical inference rules as in classical logic. Things 
will be easy if there are only two cases involved in trivial propositions, that is, either (a) is a 
tautology or (a) as a candidate for the proposition expressed and (d) as a conclusion derivable 
from contextual assumptions only are exactly the same proposition, because the use of classical 
logic inference rules is not necessary in the triviality judgment in either of these two cases. But I 
am not certain whether this is always the case. I will leave it for further research.   
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thus, identification of (a) as the proposition expressed by this utterance does not 
allow the hearer to do anything more than she could do otherwise.  

Though my informal exposition here still contains some arbitrary elements and 
should be formulated more accurately in some other occasions, it relates the trivial 
proposition case as in Allott to cases that involve tautologies, such as Boys will be 
boys or People who study math study math. If tautologous propositions are real 
tautologies, by definition, they are always true and thus the addition of them into 
the premise set of propositions will not allow the hearer to derive any other 
conclusions that she could derive without them. Thus, given an utterance of the 
sentence People who study math study math,29 the hearer may start enriching its 
meaning before she lets the literal meaning of the utterance interact with other 
positions in the context at all.     

Dealing with Allott’s example above, I let the semantic content of the sentence 
uttered interact with another contextually derived proposition. This is not 
problematic because the analysis only prohibits ‘truth based’ interaction between 
the linguistic meanings of the expressions used and contextually available 
information.  Thus, after accepting my assumptions, one can still enrich the 
meanings of component expressions by using the information provided by 
contextual assumptions. In fact, one may even ‘mimic’ some of the seemingly truth 
based inferences.30 For example, with model theoretic relations such as sub-set 
relations, one can mimic logical entailment relations without deriving a fully 
propositional representation. In this way, one can enrich the meanings of predicate 
expressions smart or human via set-containment relations, for example, without 
deriving a full proposition. On the other hand, I argue that proper logical 
introduction rules do require fully truth evaluable elements as premises (just as is 
the case in standard logical systems) and thus, they cannot be mimicked in terms of 
relations between sets.31   

                                 
29 What proposition is expressed by the use of this sentence will depend on each context and is 

not relevant to the discussion here.  
30 Of course, the claim is that such ‘seemingly’ truth based inferences are not really truth based. 

In fact, the claim is stronger than that. It would state that pragmatic inferences that modify the 
meanings of the expressions uttered prior to the recovery of the proposition expressed are not 
‘propositional’ inferences, whether propositions are interpreted in terms of their truth values or 
not (see section 6.1). But I do not have space to explain this point, and thus I use ‘truth based 
inferences’ as the guiding criteria.     

31 I regard generalized conjunction as in Partee and Rooth (1983) only as a rule of PF-LF 
mapping. For example, at an intermediate stage of the syntactic derivation for the sentence, Jack 
and Eva smoked, the syntactic system might interpret the natural language expression and as a 
lambda term, λx.λy.λP.P(x)&P(y), so that this derived functor expression can be applied to the 
individual tems jack′ and eva′ successively, deriving another lambda expression, λP.P(jack′)& 
P(eva′). However, note that the logical connective & itself stays as a truth functional connective in 
any of these lambda terms (i.e. it conjoins two propositions, such as P(x) and P(y)).  Thus, the use 
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Finally, I briefly discuss an example of a minimal proposition that Carston 

suggested (p.c.). Interpreting the utterance of the sentence John poisoned Bill and 
Bill died in a relevant context, the hearer may recover the minimal proposition 
“John poisoned Bill and Bill died” (= A) in the process of recovering the 
proposition expressed, “John poisoned Bill and Bill died because of that poisoning” 
(=B), adding the causal relation to the truth-conditional content via enrichment. 
However, nothing in my analysis prohibits this enrichment process. All I am 
claiming is that this enrichment process is not ‘truth functional’ inferences, as &I, 
&E and MPP etc. are. Causal relations are not truth functional relation, as one can 
see from the meaning of because, which is not a truth functional connective, as one 
can see in a sentence such as John came because Eva came.32 Evaluation of sub-
propositional elements or even propositional elements recovered from the sentence 
uttered is still possible, and from empirical considerations, is necessary, as Carston 
suggests. But my argument is that though such inferences are still pragmatic 
inferences (and thus, are constrained by the principles of Relevance), there is a 
formal difference between such inferences and ‘truth functional’ inferences which 
are deriving (sets of) propositions from (sets of) propositions solely based on their 
truth value assignments (in all models). Given that difference, I stipulate a certain 
feeding relation between these two kinds of pragmatic operation at the theoretical 
level. That is, ‘non truth-functional’ processes which includes enrichment 
theoretically feed into the truth functional ones that include the rules for logical 
connectives.     

I leave for further research exactly which inferences can be mimicked in this way 
and which cannot be. 

This section explained why introduction rules are not applicable in enrichment. 
The next section deals with the alleged ‘infinite inference’ problem. 

 
 

4 Alleged Infinity problem caused by introduction rules 
 
This section briefly addresses the claim that if one’s pragmatic inference system 
were equipped with logical introduction rules, one would run infinite or non-
terminating inferences. Because such non-terminating inferences are not attested in 

                                                                                                      
of generalized conjunction in terms of the lambda abstracted terms as above does not influence 
the fully truth functional status of &, ∨, →, etc at the level of logical forms.  

32 The fact that the proposition B entails the proposition A does not mean that B must be 
deduced from A by using ‘truth functional’ inferences as is used in classical propositional logic. 
Entailment relations may come from the preservation of the lexical meanings, and at least in this 
example of minimal proposition, none of the classical logic rules is used in the enrichment 
process from A to B (because, again, the causal relation is not truth functional, and neither is the 
temporal precedence relation, such as “After P, Q”).   
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interpretation data, it must be the case that the pragmatic inference system does not 
have access to introduction rules. Arguing against such claims, I show that this 
problem is caused independently of the use of introduction rules and should be 
solved independently.    
 Johnson-Laird (1997: 391) claims that introduction rules, if they are used in 
spontaneous inferences, may lead to infinite inference steps, as schematized in 
(11).33 
 
(11) a. P, Q &I P&Q &I P&Q&P &I… 
 b. P ∨I P∨Q ∨I P∨Q∨R ∨I …      
 
However, the alleged infinity in (10a) is because of the expansion of ‘P’ to ‘P, P,’ 
and ‘Q’  to ‘Q, Q.’34  It is not because of &I per se. Thus, eliminating &I from the 
system does not solve the problem completely, to the degree that the problem 
exists. Also, with regard to this structural expansion rule, note that one occurrence 
and more than one occurrence of the same formula have the same interpretation in 
truth-based inferences. Thus, the alleged infinity might be just a matter of the 
imperfect representation system, rather than some imperfection of the inference 
system. In fact, even at the level of represented deductions, logicians have tried to 
eliminate un-decidability induced by structural rule applications. Without going 
into details, one may apply a structural rule only when the consequence of that rule 
application is required by the next step of the inference.35  
 In (11b), ∨I presupposes weakening of the succedent set. Because the standard 
introduction rule for ∨ implicitly includes the structural weakening in the 
Succedent side, one has to separate the concept of ∨I and the concept of 
weakening, first, and then find out which of these has created the alleged infinity 
problem. 36  Because ∨I persists across different logical systems with different 

                                 
33 Braine and O’Brien also describe this version of the problem. Cf. O’Brien (2004).  
34 This notation is slightly sloppy, because P, Q must stay as premises of inference in order to 

be interpreted as ‘And.’ Gentzen sequent presentation captures the semantic equivalence of P, Q 
and P&Q in the antecedent of a sequent in a better way (see 16a), though comparison is not 
straightforward. Because of some technical details, (16a) formally corresponds to &E, rather than 
&I. Such technical details, however, do not matter. With ∧L and ∧R in (16a), the Gentzen system 
is complete with regard to the intended interpretation, whereas the system without &I (such as 
RT’s stronger claim) is not.  

35 Braine and O’Brien proposed a similar, but a different proposal in spirit. That is, they modify 
the underlying algorithm of their system. Because they divide rules of inference into groups which 
are not supported by the underlying logical system, it causes several problems, incompleteness as 
one. See section 5.3.        

36  Došen (1988) and Belnap (1996), among others, recommend rule presentations which 
separate the two concepts, a) rules of connectives and b) structural property of the system (where 
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structural management properties (e.g. presence or lack of structural weakening), 
and because it is weakening in the succedent that increases the number of 
propositions such as Q and R in (11b),37 the infinity problem, to the degree that it 
gives problems to the inference system, is a matter of structural weakening rule, 
rather than ∨I. Thus, one cannot fully control this problem merely by eliminating 
∨I. Just like expansion of the formulas, it is beyond the scope of this paper to 
discuss whether weakening does cause problems to the spontaneous inference 
system, and if it does, how to control it. One may adopt Intuitionistic logic which is 
lacking in weakening in the succulent, for example. But using a sub-structural logic 
makes the system incomplete with regard to the truth based semantics. Thus, it 
cannot be used to explain one’s truth based inferences in a complete way.38  
 Instead of modifying the underlying algorithm of the inference system, I would 
rather control structural rules at the level of application, as was suggested above. 
That is, one might set up the forward looking inferences in such a way such that 
one may apply structural weakening rule only if it’s output is required by a further 
inference step.39 Informally, this means that one weakens P to P, Q, only if, say, 
one has (P∨Q)→R, as another premise. 40  Alternatively, one may try a proof 
representation system which does not incorporate the structural weakening into the 
rule of ∨I, but which leaves the weakening rule implicit, so that the spurious 
ambiguity that is caused by application or non-application of the weakening rule 
simply does not arise. This analysis requires some technical explanation, and I 
leave the details for another paper.41    

As another variety of the alleged infinity associated with introduction rules, some 
might argue that recursive applications of &Introduction followed by &Elimination 
would produce infinite inference steps, but this infinity does not arise in standard 
proof representations without a Cut, such as Gentzen sequent presentation without 
Cut. Some proofs are listed in section 5 (see (17)~(20)). 

                                                                                                      
b) is explicitly represented as structural rules separately from a). In that conception, ∨I is 
independent of structural weakening in the Succedent. For example, “The rules for the logical 
operations are never changed: all changes are made in the structural rules.” (Došen, 1988: 352).  

37 One can rewrite (10b) as P P, Q  P, Q, R, …etc., without introducing ∨.  
38  Whether Intuitionistic logic is still useful in a ‘modular’ inference system in one of its 

modules is a separate issue. See section 6.1.  
39 One can prove that controlling structural rule application in this way does not influence 

provability of sequents. Thus, the system will stay complete. See section 6.3.   
40 In this case, structural weakening feeds into ∨I, which feeds into →. Thus, in this particular 

case, it leads to the same result as Braine and O’Brien. But the way that we achieve it is better, for 
the reason that we explained already. In this proposal, ∨ itself is freely applicable, as long as there 
are P and Q in the Succedent side.   

41 Roughly, notions such as ‘monotonicity’ and ‘purity’ may be assigned to the system itself. 
See Avron (1993) for the explanation of these ideas. See Wansing (1998:92) as well.   
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Finally, I discuss a more sophisticated infinity argument. Consider (12). 
 
(12) (Non-) Frame problem. 

 a. Antecedent Set  ∆� Succedent Set 
 b. P  {Q}&I  P&Q   
 c. cf. P, Q  &I P&Q 

 
(12a) represents a spontaneous on-line inference step. Though the logical inference 
rules are the same as in classical logic, (12a) distinguishes between two kinds of 
databases that are used as premises. The antecedent embodies the set of premise 
propositions that are active in the context, including the proposition expressed by 
the utterance. To draw a conclusion in the succedent set, one can also use premise 
propositions in the ‘dormant database’ set ∆, which contains the whole of the 
(propositional) knowledge that one has.  

With these assumptions, some might argue that the inference system would 
wrongly predict the existence of an infinite inference as in (13). 

 

(13) P {Q, R, S…}&I  P&Q {R, S,,…}&I  P&Q&R {S,…}&I  P&Q&R&S {…} …       
 
In (13), one may extract one proposition after another from the dormant database 
set and conjoin them with the proposition P in the active premise set. If one 
assumes that the amount of one’s knowledge is almost infinite, this model wrongly 
predicts that one may actually run an almost infinite inference.42  

However, note that this alleged infinity is not a matter of &I per se. As I have 
already pointed out, in the antecedent set, P and Q as separate propositions on the 
one hand, and P&Q as a single complex proposition on the other, play the same 
role in the classical logic. Thus, the above infinity problem will arise independently 
of the use of &I. What is problematic then is the introduction of Q, R. S into the 
active data-base, not the conjunction of those newly introduced propositions with a 
proposition that is already in the active data base. Thus, what one needs is a 
systematic way of constraining the introduction of propositions from the dormant 
database to the active database.  

This section has shown that use of introduction rules in the inference system is 
not the cause of the alleged non-terminating inferences, and that the elimination of 
introduction rules does not solve the problem.  

 

                                 
42 Also, in a spontaneous inference, one does not typically access all the pieces of knowledge 

that one has, even if the pieces of knowledge are relevant to the argument one is making.   
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5 Some Gentzen sequent proofs 
 

In this section, I show that successive applications of &I (or &R in this section) and 
&E (or &L) do not lead to undecidability. I also show that (p&q)→r and p→(q→r) 
are inter-derivable. The proofs here are elementary, and are a simple application of 
the Gentzen sequent presentation of classical logic as in Girard (1987) or Takeuti 
(1987). 
 
(14) Sequent to prove (e.g.)  p, q, (p&q)→r  r      

 
Gentzen sequent proof representation places the sequent to prove at the bottom of 
the derivation. Then, one logical connective after another is eliminated upwards 
along the chain, as is shown in below examples. If the proof is successful, the 
sequents at the top of the proof are all identify axioms in the form of (15).  

 
(15) Axiom: A �A 

 

By convention, p, q, r…represent atomic propositional letters, A, B, C represent any 
(propositional) formulas, and X, Y, Z represent sets of such formulas. I omit the set 
notations both in the antecedent (i.e. the left-hand) side of each turnstile and the 
succedent (i.e. the right-hand) side. (16) shows the axioms for the connectives, & 
and → (I use ∧ for & in Gentzen sequent presentation for some technical reasons). I 
omit the rules for other connectives. Cut is an admissible rule43  which is not 
necessary for the proof system, but is useful for improving the efficiency of the 
proof. 

 

(16) Logical rules: 
 a. A, B �X   ∧L X A Y B ∧R 

           A∧B �X X,Y   A∧B 
  b. X �A     Y, B  �Z →L X, A,Y  B     →R 

           X, Y, A→B �Z X,Y   A→B 
 c.    X �A       A  �Z   Cut 

   X   Y 
 
I have omitted some of the ‘contextual’ structural variables (i.e. X, Y, …) for 
readability. Note that ∧L in (16a) is ‘pure’ in the sense that it does not introduce a 
new propositional variable in the inference from the top to the bottom, as opposed 

                                 
43 That is, if any sequent that we can prove with Cut is provable without Cut.  
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to the ‘impure’ inference rule from A X to A∧B X, which is valid in classical 
logic, but has incorporated structural weakening in the Antecedent. The ‘pure’ 
presentation is preferable for the reason that we have discussed in section 4. In 
(16), except for the Cut rule,44 the number of the connectives decreases by one 
along each consecutive step upwards. Because there are only a finite number of 
connectives in each sequent to be proved, any proof is decidable in a finite step, 
unless Cut is used. 

Remember the successive use of &I (= ∧R here) and &E(=∧L), which may 
allegedly lead to an infinite inference. With Cut, this claim is substantiated, as in 
(17). 

 

(17) Proof 1 

p ! p q ! q

p, q ! p ∧ q
∧R

p ! p q ! q

p, q ! p ∧ q
∧R

p ∧ q ! p ∧ q
∧L

r ! r

(p ∧ q), (p ∧ q) → r ! r
→ L

p, q, (p ∧ q) → r ! r
Cut

1

 
 

(18), in which Γ and ∆ represent the two sub-proofs of (17), represents the proof in 
(17) in brief. If the Cut rule is used, then this proof might not terminate in a finite 
step, given the sequent to prove, p, q, (p∧q)→r  r.  

 

(18) Proof 1 (with abbreviation) 
Γ ∆

p, q, (p ∧ q) → r # r
Cut

1

 
 

In the position of the sub-proof Γ  in proof 1, one could insert a larger sub-proof, 
e.g., the whole of the proof 2 in (19).  

 

                                 
44 Cut is not a logical rule (which is a rule for a truth functional connective/operator). Its 

inclusion in (16) is for presentational convenience only.  
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(19) (Sub)-proof 2 

p ! p q ! q

p, q ! p ∧ q
∧R

p ! p q ! q

p, q ! p ∧ q
∧R

p ∧ q ! p ∧ q
∧L

p, q ! p ∧ q
Cut

1

 
 

Note that the left premise and the conclusion of Cut are both p, q  p∧q. Thus, we 
can use the conclusion sequent as a left premise of another Cut, by repeating the 
whole of the right premise of the original Cut as the right premise of this additional 
Cut. Thus, there is no maximal limit to the size of the sub-proof in (19), leading to 
the infinity (or undecidability) problem. 

 However, as Girard (1987) and others showed, Cut is an admissible rule in 
Gentzen sequent presentation. Without Cut, Proof 1 is represented as Proof 3. 

 
(20) Proof 3 (Without Cut) 

p ! p q ! q

p, q ! p ∧ q
∧R

r ! r

p, q, (p ∧ q) → r ! r
→ L

1

 
 

Other than Cut, all the rules in (15)~(16) reduce the number of connectives by one 
along each consecutive step upwards, and thus, all the proofs are decidable in finite 
steps. Consequently, successive use of ∧L and ∧R does not lead to an infinite 
inference.  

Finally, (22) show that the equivalence in (8), repeated here as (22), is provable 
only with &I (or ∧R here) as a rule of the logic. The proof in (23a) requires ∧R in 
the top left sub-proof.  

 

(22) (p∧q)→r  p→(q→r) 
 
(23) a. 

p ! p q ! q

p, q ! (p ∧ q)
∧R

r ! r

p, q, (p ∧ q) → r ! r
→ L

p, (p ∧ q) → r ! q → r
→ R

(p ∧ q) → r ! p → (q → r)
→ R

1

 



308 Hiroyuki Uchida 
 
 b. 

p ! p

q ! q r ! r

q, q → r ! r
→ L

p, q, p → (q → r) ! r
→ L

p ∧ q, p → (q → r) ! r
∧L

p → (q → r) ! (p ∧ q) → r
→ R

1

 
 

In this section, I showed that successive use of &I(=∧R) and &E(=∧L) does not 
lead to an infinite inference in Gentzen sequent presentation without Cut. I also 
showed that we need &I as an inference rule to support CMPP as an application 
rule in spontaneous inference. I did not show how we can prevent infinity which 
could be induced by the use of structural rules (such as expansion and weakening) 
in the proof presentations, but for some rough ideas (in the context of Modal logic), 
see Hudelmaier (1996). 
 

 
6 Loose ends and speculations 
 
This section deals with some loose ends. The discussion will be mostly speculative 
and incomplete. 
 
6.1 Mental logic over non-propositional representations.  
 
As I wrote in section 3 (cf. footnote 23), Sperber & Wilson make their mental logic 
operate over ‘non-propositional representations,’ and I add some comments to this 
claim. 
 One can interpret this claim in two different ways. One interpretation is that, in 
Sperber & Wilson’s inference system, propositional letters are not always 
interpreted in terms of their truth values. With this interpretation, it is misleading to 
state that their mental logic operates over ‘non-propositional representations,’ 
because the underlying system may still be propositional logic, only with different 
resource management properties (or, less technically, with different 
‘interpretations’ of propositional formulas). Thus, we can still stay inside 
propositional logic, only with varying ways of interpreting the propositional 
language. 
 Though truth based inferences may not be the only kind of inferences for 
Relevance Theory, they are still an important target of their pragmatic analysis. 
Thus, we can safely assume that part of the tasks of their mental logic is to explain 
one’s spontaneous truth-based inferences. But then the incompleteness problem, 
among others, is as serious a problem in their system as in an inference system with 
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the truth-based semantics as the ‘only’ intended interpretation. Because of this, the 
claim that their mental logic operates over ‘propositional’ letters that may be 
interpreted in a different way from their truth values does not make their system 
without &I any less problematic. It will still underachieve its intended tasks (or 
they may need to add stipulative side conditions to make it work in a complete 
way).  
 On the other hand, it is true that such a claim makes the application of my 
proposal less straightforward. Instantiation of the proposal in S&W’s inference 
system requires further research. In this section, I only sketch a speculative way of 
applying the proposal to such a multi-purpose inference system.   
 As long as S&W can use the same inference language, only interpreted in 
varying ways depending on which kinds of inferences they are dealing with, we can 
keep the logical language more or less the same as the one in classical propositional 
logic. To simplify things, let me stick to the propositional logic language that we 
have used in this paper, made out of expressions such as P, P&Q, P→Q etc. To 
instantiate a multi-purpose inference system as above, we may see the expressions 
in the logical language in multi-modal interpretations.45 That is, in one mode of 
interpretation, one will interpret the formulas in terms of their truth values (then in 
this mode of interpretation, the inference system is basically the classical 
propositional logic). In another mode, one may interpret P, Q etc. as ‘resources,’ as 
in linear logic (then in this mode, one occurrence and two occurrences of the same 
formula, say, P, make a difference, just as one bottle of beer and two bottles of beer 
as resources are interpreted differently). With such multi-level interpretations, as 
long as the inference system is equipped with the whole set of introduction and 
elimination rules for all the connectives in the mode of truth based interpretation, 
one can at least confirm that the system does its job in a complete way as far as the 
truth based inference is concerned. But we can also propose a multi-modal system 
in which the system is sound and complete in every mode, with regard to the 
intended interpretation in each mode (that is, the system will do its job in a 
complete way in each mode of interpretation). As I sketched in section 4, the 
alleged infinite inference problem is caused by simplistic application of structural 
rules. Thus, the multi-modal system may solve this problem without stipualtively 
banning introduction rules for truth functional connectives. Instead, we can choose 
the right set of modes of interpretations with appropriate structure management 
properties as its sub-systems.     

                                 
45 To have the interpretations in different modes interact with one another, we would have to 

modify the (logical) language expressions in the system, such as introducing some ways of 
signifying the different modes of interpretations or defining interaction rules between different 
modes, where such interaction rules might in turn require an addition of modal operators into the 
logical language. I leave a more accurate exposition of such a multi-modal system for another 
occasion.   
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As I said above, I only provide a sketch of how to instantiate this paper’s 
proposal in such a multi-modal system. First, with regard to the ‘fully propositional 
status’ of the linguistic meaning of some language expression, we may simply base 
such status on the truth-evaluability of the expression in its interpretation in the 
truth-based mode of interpretation. 46  That is, the rules for propositional 
connectives/operators cannot apply in any mode until all the premises of the rules 
are judged to be fully truth evaluable in the truth based mode of interpretation. This 
will solve the alleged overgeneration in enrichment case. What is more difficult is 
how to control the alleged infinity in terms of structural rule application (again, I 
assume that the problem is not caused by introduction rules per se). This will 
require more careful work, because, by definition, structural properties of logical 
expressions vary across various modes of interpretations. However, the different 
structure management properties in different modes mean that we can naturally get 
rid of certain structural rules in certain modes of interpretations without 
stipluatively banning those rules (e.g. in Intuitionistic logic, weakening in the 
succedent is impossible, and thus, the alleged infinity in (11b) simply does not 
arise).  

In this paper, I do not investigate whether such mode internal variation of 
structural properties is enough to cover all the kinds of inferences that Sperber 
&Wilson aim to explain. For example, an interesting question with regard to the 
multi-level interpretations of the logical expressions is whether we need to include 
a mode of interpretation in which the expressions are interpreted as tokens. But 
note that even in this mode, it does not make sense to see ‘&’ as a token as well, if 
we still see it as a ‘deductive’ system.47 Remember that formulas such as p, q, r on 
the one hand, and the connectives, operators such as &, ∨ have different statuses in 
logic. For example, only the former can stand on their own as well-formed 
expressions in the language, whereas the latter could not do this, as shown by the 

                                 
46 I abstract away from the mapping between natural language expressions used in utterances 

and the corresponding expressions in logical languages because it requires a more complex 
exposition. Roughly, the statement in the main text would change into the following: “we may 
simply base the truth evaluability of a language expression uttered (i.e. a ‘sentence’ in the case of 
a trivial proposition) on whether the corresponding logical expression (i.e. a formula in the case of 
a trivial proposition) can play a non-trivial role in the truth based inference in the context of the 
utterance.” To remind the reader of my argument in section 3, one can decide whether the logical 
expression in question can play a non-trivial role or not in such inferences without letting it 
interact with other contextually available propositional formulas in terms of truth based inference 
rules. See section 3 for details.  

47 We could stop seeing this level or mode as part of the deductive system, but then it would 
become impossible to relate this mode to the other modes which are defined to be deductive. As 
an example, note that in Lambek calculus, which pairs LF as a relational structure with PF as a 
relational structure, phonological strings include (interpretations of) ‘logical connectives,’ such as 
the binary connective ⋅ which connects, the and boy producing, (the⋅ boy).  
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ill-formed expressions, &, ∨p and q→. These connectives are not independent 
elements in the language; they play a role of mapping (simpler) formulas to (more 
complex) formulas in terms of functional derivability, where the derivability is 
inherently related to the basic property of the deductive system. Thus, insisting on 
the difference between p, q on the one hand, and (p&q) (in the Antecedent) just 
because only the latter has & as a token misses the point. If we interpreted & etc. as 
a token (and if we did not add proper logical connectives instead of them, which 
would support the ‘token’ based deductive system), then the system would simply 
stop being deductive. The interpretations of the connectives are inherently related 
to the properties of the deductive system that makes use of them. That is why 
‘commas’ in the Antecedent of a sequent have the same interpretation as & and 
‘commas’ in the succedent of a sequent have the same interpretation as ∨. Just like 
‘commas’ in proof representations cannot be treated as tokens, the connectives 
whose interpretations are inherently related to those commas cannot be treated as 
tokens. From a different viewpoint, propositions or any well-formed formulas can 
be interpreted as tokens because they are part of the set of well formed expressions 
in the language. On the other hand, the connectives such as ∧, ∨ and → are not 
well-formed expressions on their own. They are defined to express the derivability 
relations supported in the chosen deductive system. Thus, if they were treated as 
tokens and were not assigned the semantics that are expected from the basic 
properties of the deductive system, then the system would stop becoming 
deductive. This means that even in the interpretation of logical expressions as 
tokens, we cannot treat & as a token. We would have to define some functional 
interpretation which maps the token interpretations of p and q to the token 
interpretation of p&q.48 I leave the structural property in that mode of interpretation 
for future research.      
 The second way of interpreting the claim that Mental Logic operates over non-
propositional expressions is that their inference system deals with sub-propositional 
expressions (such as individual terms and predicate expressions), as well as 
propositional expressions. But we can accommodate this requirement just by using 
a system such as predicate logic (or a variant of higher order logic) at sub-
propositional levels. In this paper, I did not explicitly look into substructures of the 
propositional expressions such as P, Q, R, but we presupposed the necessity of sub-
propositional expressions in the inference language in many parts of the paper. For 
example, in order to model entailment relations at sub-propositional level in terms 
of set containment relations, I would need to use sub-propositional expressions in 
the logical language. Incompleteness at the sub-propositional level is a separate 

                                 
48 As in linear logic, we would need different kinds of &, such as a multiplicative one as 

opposed to an additive one.   



312 Hiroyuki Uchida 
 
issue that I abstract away from.49 At the moment, as long as the inference system is 
complete at the level of the truth-based propositional calculus, it serves our purpose 
(note that in the standard predicate calculus, the connectives &, ∨, → etc. are still 
interpreted as propositional/truth functional connectives. See footnote 31).       
    

                                 
49  This does not mean that incompleteness does not matter at the sub-propositional level. 

Rather, it is not yet clear to me how we can use deductive inferences to explain spontaneous 
inferences at that level. A Lambek Calculus NL, which regards syntactic categories as formulas, 
such as NP�S, S,  NP•NP (cf. p�q, q, p&q, respectively), has been shown to be complete with 
regard to a well-defined semantic model (i.e. free groupoid), and this shows that it is possible to 
achieve completeness with regard to some well-defined semantics by providing formulas-as-types 
to both propositional and sub-propositional logical expressions. However, in our case, the 
inference is not about compositional derivations of LF representations from the lexical level 
(which the use of logic in the syntax can take care of). Rather, it is about spontaneous inferences 
manipulating the out-put of the syntactic derivation at LF after its near isomorphic translation to 
Language of Thought (LoT) representations. I am not sure how the use of deductive systems can 
constrain spontaneous inferences at the sub-propositional level in LoT. Lexical enrichment is an 
example of such sub-propositional inferences. However, whereas ‘narrowing’ in lexical 
enrichment might be captured in terms of set-containment relation between sub-propositional 
concepts, it is not clear how using predicate logic (or higher order logic) can provide insight in the 
process of loosening. If we use first-order predicate logic or a variant of simply typed lambda 
expressions to represent LoT, then to the degree that the logical language expressions are 
constrained by some formal properties of the language, spontaneous inferences using such 
language expressions will be constrained as well. However, as one can informally understand by 
considering how the use of English may constrain one’s general thinking in English, the way that 
one’s inference is constrained by the language that one uses in inference (because of the limited 
expressive power of the language) may be quite different from the way that the classical 
propositional logic may constrain one’s spontaneous propositional inferences as has been 
discussed in this paper. One possibility is that ‘sub-propositional inferential processes’ involved in 
enrichment etc. are not deductive in a direct way. That is, to the degree that both the starting point 
and the end result of (lexical) enrichment are part of propositional representations which have 
some formal structures as are expressible in simply-typed lambda expressions, for example, 
enrichment may still be constrained by the syntax of such logical expressions, but again, that is a 
different kind of constraints from the constraints that (the deductive rules of) the classical 
propositional logic may provide for propositional inferences. In this interpretation, the process of 
enrichment is not explainable in terms of a logical rule such as &I, MPP etc. It is only that 
enrichment manipulates some logical language representations. We can explain possible use of 
set-containment relations in enrichment (i.e. narrowing) in this indirect way. That is, enrichment 
may manipulate certain (logical) properties of the language representations that it operates over, 
and also, because the final product of sub-propositional inferences is the proposition expressed 
which does enter into properly deductive propositional inferences, enrichment may be geared 
towards the preservation of ‘logical entailment relation’ (again, mimicked by set-containment 
relations) at the sub-propositional level. However, the process of enrichment itself might still not 
be definable as a deductive rule. I leave this issue for future research.              
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6.2 Denotational or procedural views of semantics and soundness and 
completeness of the system  
 
In this paper, I adopted a ‘denotational view’ of semantics. That is, our semantics 
modelled the denotations of the logical expressions, rather than modelling the 
syntactic proofs/derivations themselves, as Heyting did (see the next paragraph). 
Braine and O’Brien (e.g. O’Brien 2004), on the other hand, explicitly advocate a 
kind of ‘procedural semantics.’ The claim is that the semantics of the connectives 
are based on what they allow one to do with them.  

There are two ways of interpreting this claim. In one interpretation, their 
semantics is based on what mental logic rules allow one to do with them in the 
semantics. In this case, however, there is no inherent difference between their 
conceptions of the semantics and the above mentioned ‘denotational’ view of the 
semantics. In the denotational view, the semantics of logical language models what 
the syntactic system can do by way of interpreting the syntactic objects in the 
intended semantic structure. In that sense, the semantics of the deductive system 
does correspond to what the syntactic system allows one to do in the semantics. 
Whether or not they use truth tables in the intended semantics is a separate issue. 
We could interpret the inference language in a semantic structure that is different 
from the one represented by truth tables (i.e. the Boolean lattice). Braine and 
O’Brien could define whatever semantic structure is suitable for their purpose as 
long as the intended semantics is formally well-defined. But whatever denotations 
they may assign to the inference language, they must check whether what the 
system allows one to do at the level of syntactic derivations matches up with what 
the system allows one to do at the level of the (system internal) denotations in a 
sound and complete way, so that one can confirm that the system actually does the 
job that they intend it to do.  

The alternative interpretation of their claim is more interesting. They might be 
assuming that their semantics directly model their ‘proofs’ (or their deductive 
steps). This reminds me of Heyting’s semantics. In interpreting propositional 
languages, Heyting did not try to find out when each propositional formula is true. 
Instead, he tried to find out what the proof of each formula is (cf. Girard 1989: 5). 
Thus, Heyting first stipulated that the interpretation of each atomic formula (say, P) 
is its proof.50 After that, he stipulated that a proof of P∧Q is a pair (p, q) consisting 
of a proof p of P and a proof q of Q (cf. Girard, 1989:5).   

                                 
50 What counts as a proof of an atomic formula is not clear, but consider what one would do to 

prove each P, such as 2+3=5. Probably one could place two objects on the table, add three more 
objects to them, and then count the total as five, which may count as a proof of 2+3=5. In any 
case, the point of the direct interpretation of proofs is that, once we agree upon the proof of each 
atomic formula as an interpretation of that formula, then we can compute the proofs of more 
complex formulas out of the proofs of atomic formulas at the level of model structure, in the way 
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However, I do not think that an attempt to interpret the syntax of their mental 
logic in this direct way would be successful for Braine and O’Brien for various 
reasons. First, in the case of Heyting, he was interested in the direct interpretations 
of the proofs themselves. Thus, for Heyting, it does not matter what the resultant 
semantics turns out to be, as long as it directly represents the syntactic 
proofs/derivations (and as long as the semantic structure turns out to be well-
defined). This is not the case for Braine and O’Brien, they have some empirical 
phenomena to explain, that is, spontaneous inferences as psychological phenomena. 
Thus, their semantics should have an appropriate structure as a model of one’s 
system for spontaneous inferences.51 Secondly, the incompleteness of the system 
without &I52 comes from the ‘incompleteness’ of the syntactic system at the basic 
level. 53  Given this inherent incompleteness of their syntactic system, direct 
interpretation of their system is not likely to help Braine & O’Brien’s system 
(which does not have the property of symmetry) with regard to soundness and 
completeness relative to the direct interpretation. This is because the semantic 
structure is evaluated with full generality. Even though the initial interpretation 
rules map only the objects that their syntactic rules allow one to generate onto some 

                                                                                                      
suggested in the main text. Note that even in this direct interpretation method, Heyting had to 
provide some abstract ‘denotations’ to the language expressions, whether they are atomic or 
complex. The difference between the ‘denotational view’ and the direct/syntactic view of 
semantics then is simply that for the denotational view, one provides a matching semantic 
structure to a syntactic system (such as a Boolean lattice to the classical propositional logic) in the 
first place and then tries to prove soundness and completeness of the syntactic system with regard 
to that semantics, or for the syntactic view, one tries to directly represent each syntactic object and 
all the proof steps in one’s semantic model, hoping that the resultant semantics constitutes a well-
defined structure. The benefit of the first strategy is that the semantic structure is already well-
defined at the start, because one picks up a well-defined structure in the first place. But soundness 
and completeness might not hold (and then one might look for another well-defined semantic 
structure as a candidate). With the latter view, one tries to set up the semantics in such a way that 
it follows each syntactic proof step. Ideally, the syntax should become sound and complete with 
regard to the resultant semantics created in this way. However, a problem of this second strategy 
is that there is no confirmation that one can create a well-defined semantic structure at the end of 
the day. Also, for technical reasons, maintaining soundness and completeness turns out not to be 
so easy to sustain even in this way of setting up the semantics tailor-made for the syntax. See 
chapter 1 of Girard (1989) in this regard.        

51 In other words, though the (system-internal) semantics of a logical language is independent of 
the (system-external) semantics as is represented in the inference data, these two kinds of 
semantics should match up quite closely (ideally, they should be isomorphic to one another) so 
that one can use the system in an empirically meaningful way.  

52 Or in Braine and O’Brien’s theory, the incompleteness of the system which puts &I into a 
different group from the core group of rules. See the next subsection, 6.3. 

53 Informally, a syntactic system itself would become ‘incomplete’ if it is equipped with only 
one of the pair of rules for a connective used in the language, unless this elimination falls out from 
the basic structural property of that language.  
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semantic objects (and thus, their syntax will be sound and complete with regard to 
the semantics at this initial stage), evaluation of the resultant semantic structure 
with its fully general representational capacity will justify addition of some more 
semantic objects whose syntactic correspondents the syntax cannot generate with 
the given set of rules.   

I wait for another occasion to provide a full review of Braine and O’Brien’s 
analysis. In this section, I have added some speculative comments about alternative 
ways of interpreting deductive systems.    

  
6.3 Multi-modal inference system. 
 
As I mentioned in section 4 (footnote 35), Braine and O’Brien divide mental logic 
schemas into different categories. The basic ones (such as MPP) apply 
automatically. Some others (including &I) are only applied if their output will feed 
one of the basic ones. They claim that this solves the alleged infinity problem. For 

example, one cannot apply &I as in P ��P&P unless this application feeds one of 
the main schemas, such as MPP, avoiding the alleged infinity in (11a) in section 
4.54 I do not review this proposal in detail in this paper, but there are several 
problems. First, as I show in the main text, the alleged infinity, even if it exists, is 
not caused by introduction rules themselves. Thus controlling the use of 
introduction rules does not solve the problem in a complete way (without further 
stipulations that make the system even more complex). Also, dividing the rules for 
logical connectives into different groups is dangerous, because there are certain 
derivability relations among these rules and separating them into groups with 
restricted feeding relations risks making the system incomplete not only in each 
group but at the level of the whole system.55 Compare their proposal with the 
informal suggestion in section 4 in which one controls structural rule application. 
To require that one may apply structural rule only if the output feeds into a logical 
rule is less harmful in several ways. First, the division between logical rules (i.e. 
rules for logical operators connectives, such as &, ∨, and →) and structural rules 
(i.e. weakening, contraction, etc.) are already there in logic. There are several 

                                 
54  Without further restrictions, Braine and O’Brien’s system does not solve the alleged 

overgeneration with enrichment as in (2)~(4) because in that case, the output of &I does feed 
MPP. But use of &I in relevance theory has not been one of their concerns.    

55 For each connective, having the elimination rule without the introduction rule is problematic, 
as I have shown in the paper. This is the same (in a slightly different way) if the introduction rule 
and the elimination rule are put into different groups of rules. Also, consider the equivalence 
between (P→Q) and (¬P∨Q). Given equivalence relations like this one, putting the rules for → in 
one group, and the rules for ∨ in another, restricting the use of the latter, then also risks making 
the system incomplete with regard to the intended interpretation.  
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diagnostics that one may use for telling the differences between them. For example, 
simply count the number of connectives before and after each rule application. 
Logical rule application necessarily influences the number of connectives (or, 
equivalently, it influences the complexity of the formulas or the structured 
configurations of formulas). On the other hand, application of a structural rule in 
itself does not influence the complexity of the formulas.56 It is not only that logical 
rules and structural rules are different in nature. See the footnote 36 for an 
observation to the effect that logical rules are independent of the structural 
properties of the system. This independence of logical rules from structural 
properties allows us to limit the application of structural rules in the way that we 
explained in section 4. In fact, there are several established proofs that show that 
applying a structural rule only if the output feeds into some logical rule does not 
influence the set of derivable (or provable) sequents (see Hudelmaier 1996, for 
example, in this regard). Thus, we have some confirmation that restricting the 
application of structural rules in this way to avoid the alleged overgeneration does 
not influence the derivability of sequents (or, semantically, the validation of 
arguments) in the inference system. If the original system without such control of 
structural rule application is complete with regard to the intended interpretation, 
then the same system with such control is also complete.  
 I leave further evaluation of Braine and O’Brien to further research.  
 
6.4 Truth-based judgment in spontaneous inference 
 
In (7) (repeated here as (24) below) in section 3, I argued that the spontaneous 
system at the basic level should be equipped with the rule which can directly 
support the truth functionally equivalent role that p, q on the one hand, and (p&q) 
on the other, play in the Antecedent of a sequent.  
 
(24) a. p, q, (p&q)→r  r    
 b. p&q, (p&q)→r  r   
   
Carson (p.c.) claims that it is not clear why this equivalence is something that the 
spontaneous inference system should be expected to explain. I agree that it is 

                                 
56  Contraction of P&Q, P&Q � X to P&Q � X may seem to influence the number of 

connectives, but this reduction of the complexity of the form is not really because of the structural 

rule application itself. Note that from P&Q, P&Q � X, one may first eliminate two occurrences of 

& via &E, producing, P, P, Q, Q ��X. After that, one can apply contraction, producing, P, Q ��X. 
Based on the assumption that different routes to reach the proof of the same sequent actually 
represents the same proof, we can claim that structural rules do not influence the complexity of 
the structured configurations of formulas 



  Logic in Pragmatics   317 
 

debatable whether we can directly recognize the same semantic roles that p, q 
separately and p&q together play as premises in our spontaneous truth-based 
inference at the data level. However, I am not discussing the thing with regard to 
the semantics of the inference data only. I am also evaluating the spontaneous 
inference system with regard to whether it does its job in a complete way as a well-
defined deductive system. A system that lacks &I but with &E cannot do &I in the 
syntax by stipulation, but the intended semantics (if the Boolean semantics as I 
suggested is the intended semantics) predicts that the system can validate that 
syntactically impossible sequent in the semantics. Thus, the system is inconsistent 
between the verdict in the syntax and the (contradicting) verdict in the intended 
semantics. They could provide an alternative semantics as the intended semantics 
so that this inconsistency can be resolved, but for the moment, I find it hard to 
come up with such an alternative which matches with their syntax in a complete 
way. Also, even if they could successfully provide the semantics with regard to 
which their suppression of &I from the inference system is complete, that 
alternative would mean that we could only recognize the above mentioned 
equivalence in the roles played by p, q and p&q only in an indirect (or reflective) 
way as I explained in section 3. I am not sure if I feel as if my own recognition is 
only indirect in my spontaneous inference. Given that it makes the definition of the 
intended semantics far more difficult, I argue that it is better to equip the inference 
system with &I at the base level, and explain why &I is not used in our 
spontaneous inference in certain cases for independent reasons. For example, as I 
have sketched in 6.1 and 6.3, with multi-modal interpretations of the inference 
language, we may recognize the difference between p, q and p&q as premises in a 
mode of interpretation that is different from the truth based one. This may explain 
why we feel as if there are differences between these two at the level of intuitions.  

 
 
 
7 Conclusion 

 
If a pragmatic inference system is to explain one’s truth-based inference (possibly 
among other kinds of inference), it is not desirable to eliminate logical introduction 
rules completely from the inference system, with view to preserving the 
consistency of the system as a whole. Use of introduction rules in the inference 
system as a whole does not lead to overgeneration via enrichment. Introduction 
rules can apply only with fully propositional elements as premises, and thus, such 
rules cannot be applied before the recovery of the proposition expressed. The 
alleged infinite inference steps are not caused by introduction rules per se, and the 
problem must be solved independently. 
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