Frozen Scope in Type Logical Grammar

HIROYUKI UCHIDA

Abstract

I discuss frozen scope between object quantificational NPs (QNPs) in two kinds of
ditransitive-verb construction. In order to derive a correct structural relation between
the two objects, I adopt Morrill’s ditransitive verb category type with certain
modifications. For scope alternation, I reformulate Hendriks’ argument(-slot) raising
in a Lambek Calculus system. The proposed analysis requires an overt functor
between the two QNPs, and only the prepositional construction has a pronoun to as
such a functor, which explains why only this construction has scope ambiguity.
Formulation of the proposal in a deductive grammar system requires modifying the
division of labour between the grammar system and the lexicon. The proposal
predicts (excessively) strong locality constraints on scope switch.

1 Introduction

Bruening (2001:235) reports that the double object (DO) construction in (1a) has
only the surface scope reading, a>every, while the prepositional (PP) construction
in (1b) has both the surface and the inverse scope readings.’

(1) (a) The teacher showed a (#different) student every book.

*every>a, a>every
(b) The teacher showed a (different) book to every student.
a>every, every=>a

If we merge the verb show successively with its two objects in (la), as the
bracketing in (2a) suggests, then the universal QNP c-commands the indefinite and
we should get the inverse scope reading. If we adopt an equivalent of May’s QR
and assume that the two quantifiers as higher order functors are applied to the

*] am grateful to Annabel Cormack, Neil Smith, Sally McConnell-Ginet, Michael Moortgat,
Nicholas Allott, Alison Hall, Robert Truswell and Marc Richards for comments and informative
discussions. Needless to say, they are not responsible for any of the mistakes in the paper.

! a>every means that the indefinite takes wide scope over the universal quantifier.
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verbal expression in two different orders, as (2b) and (2c¢) suggest, then we should
get both the surface and the inverse scope reading with (1a). Neither is the case in
Bruening’s judgment.

(2) (a) The teacher [[showed a student] every book]
(b) [Some_student gy [Axe.[Every bookeyy [Aye.[the teacher showed x y]]]]]
(c) [Every book(ey [Aye.[Some_student ey [Axe.[the teacher showed x y]]]]]

In order to avoid generating the c-command relation in (2a), I adopt the lexical
entry for the ditransitive verb show in (3a), which Morrill uses (cf. Morrill
1994:128).”

(3) (a) show: (NP1\S)/(NP2eNP3);
show”" = Ao.Ax.[show' (]l (a))(m2(a))(x)] {type:((exe),(e,t)}
(b) show: ((NP1\S)/NP3)/NP2;

Ax. Ay Az [show'(x)(1)(2)] {type: (e,(e,(e,t)))}

The ditransitive verb category in (3a) requires the two internal NP arguments to be
merged first as (NP2eNP3) (the corresponding semantic type is (exe)), before the
result is merged with the verb. Informally, the connective e merges two
categories/logical expressions into an ordered pair, which is one complex
category/logical expression.” The functor category (NP1\S)/(NP2eNP3) has two
arguments, the complex object argument, (NP2eNP3), and the subject argument,
NPI1. Accordingly, the logical expression show' in (3a) also has two arguments,
where its first argument is of type (exe) for the two objects combined, such as
(tom’emary’) for Tom Mary in the sentence Bob showed Tom Mary. But in the
equivalent lambda expression on the right-hand side of the equation in (3a), we can
use the standard three place functor show’ of type (e(e(et))), by means of the &
operators. Given (tom’emary’) of type (exe), wl selects the left member and w2
selects the right member. Then the selected tom’ and mary’ are put into the first
and the second argument slots of show’. This means that, though the number of the
syntactic arguments of the verb show is two, we can preserve the three arguments
of the semantic functor show’ in the normalized logical form.

Unlike Morrill, however, I do not use the curried ditransitive verb
category/logical expression in (3b), which requires the two objects to be merged

? For convenience, I have added numbering on NPs to show the linear order among NPs in the
PF string. The category NP is mapped to type ¢ in the semantics (see section 2).

3 See section 2 for details.
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successively with the verb. (3b) would lead to the wrong c-command relation in
(2a). It would also over-generate scope readings in my analysis, as we see in
section 3.

To switch scope between two QNPs, 1 reformulate Hendriks’ argument-slot
raising as categorial argument-slot raising in a Lambek Calculus system, “NL.™
We can switch scope only if there is a functor of a certain category between the two
object QNPs.

Because we can switch scope only between co-argument QNPs of an intervening
functor in a non-associative grammar system NL, certain locality constraints fall
out. In order to switch scope between QNPs that are farther apart, we have to be
able to treat the phonological string between the two QNPs as a complex predicate.

Section 2 informally explains the grammar system that I use. Section 3 explains
the proposed scope-switch system in its initial form and applies it to the ditransitive
constructions. Section 4 reconsiders my proposal in a deductive grammar system.
Instantiation of my proposal in such a system requires adjusting the division of
labour between the grammar and the lexicon. I also generalize the initial argument
slot raising system, which leads to slightly different empirical predictions while
still preserving the merits of the initial system. Section 5 briefly discusses the
locality of scope taking and a controlled introduction of association to the grammar
system. Section 6 provides a concluding summary.

2. Type Logical Grammar (Informal)

Type Logical Grammar (TLG) assigns category types to lexical items, as in (4).
The notation is <phonological item; syntactic category; logical expression>.

4) (a) Tom: <Tom; NP; tom'>
(b) love: <love; (NP\S)/NP; Ax.Ay.love'(x)(y)>
(c) Meg: <Meg; NP; meg'>

I assume that a syntactic proof is based on the syntactic categories only. The PF
strings and semantic representations are derivative, as we will see. Syntactic
categories and semantic types are defined in usual ways, as in (5) and (6). F is the
set of categories and 7YP is the set of semantic types. For a more complete
exposition, I refer the reader to Chapter 1 of Bernardi (2002).

* Cormack (1985) also argues for switching the scope of QNPs by means of the related functor.
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(5) (a) The set of basic categories, 47 = {NP, S, N..}, is a subset of F.
(b) If A and B are members of F, so are (A\B), (B/A) and (AeB).
(c) Nothing is a member of F' except on the basis of (a) and (b).

(6) (a) The set of basic types, B = {e, t...} is a subset of 7TYP.
(b) If a and b are members of TYP, so are (a, b) and (axb).
(c) Nothing is a member of 7YP except on the basis of (a) and (b).

Given the sets " and TYP, we can define a mapping function, type: FxTYP, as in
(7).

(7) (a) type(NP) =¢  type(S) =t
(b) type(A\B) = type(B/A) = (type(A), type(B))
(c) type(AeB) = (type(A)xtype(B))

In section 4, I provide a slightly more formal definition of syntactic categories,
phonological expressions, and typed lambda expressions as semantic
representations. Taking the logical nature of TLG more seriously, we interpret
syntactic categories as sets of phonological/semantic objects in that section.

Given the categories provided by the lexical items, the grammar then checks if it
can derive a single category (for example, S for sentential expressions) out of the
lexical categories. The derivations are based on the syntactic rules of the
connectives, such as / and \, plus some general syntactic rule(s).

Reflecting the symmetry of the logical system, TLG has both an introduction rule
and an elimination rule for each categorial connective, such as / and \, in the so-
called natural deduction presentation. However, in this section, I show only the
rules that I use in section 3.”

(8) (a) / Elimination (/E):
Syntax: ((NP\S)/NP, NP) = NP\S
Semantics: ((Ax.Ay.love'(x)(y), m") = (Ax.Ay.love'(x)(»))(M') —>p red.
Ay.love'(m')(y)
PF form: (love, Meg) — (love-Meg)
(b) \ Elimination (\E):
Syntax: (NP, NP\S) = S
Semantics: (m’, Ax.smoke’(x)) — (Ax.smoke’(x))(m') —>p req. Smoke’(m’)

> Logical forms are given the simplified form, Functor(Argument,)...(Argument,), as in

like'(x)(y), abbreviating ((like’ x) y) etc., which informally means y likes x. The connective ‘-’
over PF items represents temporal precedence.
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PF form: (Meg, smoke) — (Meg-smoke(s)).

Informally, the functor category Y/X requires the argument category X
immediately to the right, producing the output category Y as a result, and X\Y
requires X immediately to the left, producing the output Y. In the semantics, they
are both interpreted as function application. The base grammar system that I adopt
is the non-associative, non-commutative system, NL, which configures categories
into binary structures, as indicated by round brackets.® Because of the non-
associativity, bracketing as in (Y\Z)/X is taken seriously. That is, the order of the
two arguments must be X first and Y second, with Z as the final output.

Lambek calculus has another binary connective e, which explicitly represents
successive merges of category types into binary structures in NL. I only show the
introduction rule for e, with the corresponding semantics and PF concatenation.

9) e Introduction. (el)
(a) Syntax: (NP1, NP2) = (NP1eNP2)
(b) Semantics: (tom’, meg’) — (tom'emeg’)
(c) PF form: (tom, meg) — (tom-meg)

The semantics and the phonology are provided informally here. For the semantics,
in (9b), the connective e used in the typed lambda expression is neither associative
nor commutative, just as the categorial connective e is non-associative and non-
commutative. This is a necessary assumption to prevent a mix-up of the two
arguments tom’ of type e and meg’ of type e in the logical term (tom’emeg’) of
type (exe), in their argument order with regard to a verbal functor, for example.
The connective - in phonological terms is non-commutative and non-associative,
though I mostly abstract away from phonological structures in this paper. In order
to decompose the complex logical expression, (aef), into its subparts, we use the
pair of operators ml and w2, which select the first member a and the second
member B of the complex expression respectively. We see its applications in the
next section.

®1 often omit the round brackets when the structure is made out of two sister categories only,
such as, NP, NP\S. The LF and the PF forms are bracketed accordingly, to preserve the soundness
and completeness of the syntax to the intended interpretations, though I omit the brackets for
these expressions as well, unless bracketing has some importance to the issue discussed there.
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3 Proposal
3.1 Hendriks’ argument(-slot) raising

In order to switch scope by means of a functor, we need to be able to modify the
type of the functor. My scope switch system is based on Hendriks’ proposal
(Hendriks 1987). Hendriks’ argument(-slot) raising is defined over semantic types,
as in (10).

(10)  (a) Type Shift: (a*, (b, (c*, 1)) = (a*, ((b,1),1), (c*, 1))
(b) Semantics: P = M A0M* .00z P(x*)(2)(y*))
Types of variables. P: (a*, (b, (c*, t))), O: ((b,t),t), x*: a*, y*:.c*, z: b,

N.B. a*, b, ¢* are meta-variables for some types, where a* and ¢* are such that

(a*,(b..)) =(b..), (e,(b..)), (e,(e,(b..))), etc. and (c*,t) =t, (e,t), (e,(e,t)), etc.
(cf. Hendriks 1987: 109)

If a functor has an argument slot of type b, then we can raise it to type ((b,t),t), so
that the functor now can be applied to type ((b,t),t) argument, rather than to type b
argument. The meta-variables x* of type a* and y* of type b* mean that the functor
P can have any number of arguments (including zero arguments) before and after
the argument z of type b, which is type-raised by the rule.

Hendriks’ system allows scope alternation among any co-arguments of a functor.
If we use the curried ditransitive-verb entry in (3b) with his system, it cannot block
the unattested inverse scope reading with the DO construction in (1a). Given the
functor show’ of type (e,(e,(e,t))), we can apply argument raising to its two object
argument slots in two orders, deriving the two scope readings.

(I1)  (a) Type Shift: (e, (e, (e, ))) = (((e,0.1), (e,(e,1))) = (((e,1),1),(((e,1),1),(e,1)))
(b) Semantics: show’ = AQ1.Ay.Az.Q1(Ax.show'(x)(y)(z)) =

MO1.002.22.02(0y.01(0x.show' (X)(1)(2)))

(12) () Type Shift: (e, (¢, (e, 1)) = (e, (((e;1),0,(e;1))) = (((e,0,1),(((e,0),1).(e,1)))
(b) Semantics: show’ = AQ2.Ay.Az.02(Ay.show'(x)(»)(z)) =
AQ1NQO2. A z.Q1(Ax.Q2(\y.show'(x)(¥)(2))),
where Q1, Q2: (et)t, and x, y, z: e.

Applying the outputs of (11) and (12) to two QNP objects of type ((et)t) and to a
normal type e subject such as Tom in (13a) derives the two scope readings in (13b)
and (13c).
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(13)  (a) Tom showed some student every book.
(b) Some_student’ ¢y (Ax.Every_book’ ¢ (Ay.give'(x)(y)(tom")))
Some>Every
(c) Every book’(Ay.Some student'(Ax.give'(x)(y)(tom")))
Every>Some

Because of this, I use only the category (NP\S)/(NPeNP) in (3a) for ditransitive
verbs, together with a modified argument-slot raising that I show in the next
subsection.

Argument-slot raising should naturally lead to certain locality constraints on
scope-taking; scope of a QNP should stay within the domain of the functor which
takes the QNP as an argument. However, because Hendriks uses a fully-associative
grammar system with an abstraction rule, a QNP can take scope beyond the domain
of its local functor, by treating an indefinitely long phonological string as a
complex functor.

(14)  (a) Some student [said that Tom read] every book.
(b) Every_book'(Ay.Some_student’ ¢y (Ax.say’ er)(read’ ¢(er)(v)(tom’))(x)))

Given (14a), association (re-bracketing) and A abstraction allow us to treat the
string said that Tom read as a complex type (e(et)) functor. We can then apply
argument-slot raising to its type e argument slot of this complex functor.” This
derives the unacceptable scope reading every >some, as in (14b).

In order to solve these problems, I modify Hendriks’ argument-slot raising in a
non-associative and non-commutative grammar system NL.

3.2 Syntactic category type raising in NL

In this sub-section, I reformulate Hendriks’ argument-slot raising so that it is
constrained by syntactic category. Initially, I limit an application of argument-slot
raising to a functor that has maximally one NP argument at each side, as in (15a).

(15)  (a) (NPI\T)/NP2, where T is normally S.
(b) (NPI\T)/NP2 = (NPI\T)/((S/NP2)\S) = ((S/(NPI\S)\T)/((S/NP2)\S)
(c) (NPI\T)/NP2 = ((S/(NPI\S)\T)/NP2 = ((S/(NPI\NS)\T)/((S/NP2)\S)

NP1 or NP2 can be missing in (15). For example, (15) can be applied to NP\S for
intransitive verbs (though it does not switch scope, for lack of another QNP). The
semantic rules of (15b) and (15c) are (16) and (17), when T is instantiated as S.

’ The explanation is sketchy for space reasons. See Hendriks (1987:112-115) for details.
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(16)  (a) Type Shift: (e,(e,1)) = (((&;1):0).(e,1) = (((e,),),(((e,0),),1))
(b) Semantics: P = AQ1.Ay.Q1(Ax.P(x)(y)) =

AQ1.1002.02(hy.O1 (Ax.(P(x)(1))))

Variable types Q1, Q2: (et)t;x, y: e.

(17)  (a) Type Shift: (e, (¢, 1) = (e, (((e,0),1), 1)) = (((e,0),0),(((,1),0).1)
(b) Semantics: P = A02.Ay.02(Ay.P(x)(y)) =

AQLINQ2.01(Ax.02(0y.P(x)(»)))

T is normally S. For example, when the functor is a transitive verb, such as love, as
in Every boy loves some girl, which has the lexical category (NP\S)/NP and the
logical entry, Ax.Ay.love'(x)(y), applying (15)~(17) derives the two higher order
functors as in (18a) and (18b), which lead to the surface and the inverse scope
readings, respectively.

(18) () ((SNPI\S)\T)/((S/NP2)\S); L01.002.0200.01(x.Jove'(x)(»)))
(b) ((S/NPI\S)\T)/((S/NP2)\S); LO1.102.01(Ax.02(hy.love' (x)(»)))

However, (15) also covers functors that have the specified number of NP
arguments as above but do not have the output category S, such as prepositions. In
such cases, as well as the argument-slot raising, we also apply value-raising to the
functor, with regard to the T category, as I show in section 3.4.

Next, I adopt the ditransitive verb entry in (19a) that Morrill uses.

(19)  (a) show: (NP1\S)/(NP2eNP3); show" = Aa..Ax.[show'(rt]l(a))(m2(a))(x)]
(b) show: (NP1\S)/NP3)/NP2; Ax.Ay.Az.[show'(x)(y)(2)]
(cf. Morrill, 1994: 128)

(16a) requires the two NP objects to be merged first, before the resultant category
NP2eNP3 is merged with this verbal functor. In the logical form, the operator =l
selects the first member of the complex NP argument o of type exe and n2 selects
the second member. The two parts of the complex object NP argument are placed
back into the appropriate type e argument slots of the ditransitive verb expression,
show’, preserving the three argument slots in the normalized logical form.

Unlike Morrill, however, I do not adopt the curried entry (19b). This entry not
only leads to an undesirable scope reading in (13c), but it also derives a wrong c-
command relation between the two object positions in (20a). Given the standard
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binding asymmetry as in (20b) and (20c), the right object should not c-command
the left object.®

(20)  (a) [Tom [[showed Nancy] herself]]
(b) Tom showed Nancy; herself; (in the mirror).
(c) *Tom showed herself; Nancy; (in the mirror).

In sub-section 3.1, we have seen that an associative grammar with an abstraction
rule can nullify the locality constraints that should naturally follow from argument-
slot raising. Because the A abstraction rule or its categorical correspondents /, \
introduction rules are essential in TLG, I preserve them and adopt the non-
associative system NL as the base grammar.

3.3 Application 1: DO construction
First, I apply my analysis to the DO construction in (21a).

(21)  (a) Meg showed a (# different) student every book. *every>a, a>every
(b) show: <show; (NPI\S)/(NP2eNP3); Ao.Ax.[show'(t]l (o)) (m2(a))(x)]>
(c) a student: <a-student; (S/NP)\S; AA.some'(st")(Au.4A(u))>
(d) every book: <every-book; (S/NP)\S; AB.every'(bk’)(Av.B(v))>
Types: Every’, Some': (et)((et)t), o:exe, x,u,v:e, A,B:(et).

In the DO construction, there is no functor between the two object QNPs. Thus we
have to merge the two QNPs directly, by using a slightly modified eI rule in (22).”

(22)  (a) Syntax (e Introduction(Q)):

a-student every-book
(S/NP2)\S (S/NP3)\S .1
(S/(NP2eNP3)))\S

¥ For more binding data, see Barss and Lasnik (1986) and Larson (1988). Though I emphasized
the c-command relation for convenience, my binding explanation is not directly dependent on this
relation. See Uchida (2005) for my analysis of binding data.

? 1 should derive oI(Q) from the basic eI in (9), though I have failed to do so. See section 4.2.1.
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(b) Semantics:

a-student every-book .
AA.some'(st")(Au.A(u)) AB.every'(bk")(Av.B(v)) ()
AR.some'(St")(Au.every’(bk")(Av.R(uev)))

The natural deduction presentation as in (22) is roughly like the standard syntactic
tree notation upside down, with the lexical expressions aligned at the top in the PF
left to right order. The output logical expression in the bottom line in (22b) has type
(((exe),t),t), where its argument R has type ((exe),t). The logical expression shows
that the scope relation is the surface scope, some>every, between the two object
QNPs.

Note that el just juxtaposes the two items to be merged, preserving the current
structural relation between the two items and the internal structure in each item.
Arguably, ¢I(Q) does a little more than juxtaposing the two items, but considering
o[(Q) is a variant of eI, a natural requirement is that eI(Q) preserves the scope
relation represented in the surface linear order between the two QNPs that ¢I(Q)
merges. As | have just shown, this is the case.

When we merge the result with the ditransitive verb show, we apply argument-
slot raising to show.

(23)  (a) (NP1\S)/(NP2eNP3) = (NP1\S)/((S/(NP2eNP3))\S)
(b) Ao Az.[show'(t]l (o)) (m2(a))(2)] =
AQ2.2z.Q2(Aa.show'(ml(a))(m2(a))(z))
Types: Q% (((exe).t).t); a: (exe); z: e.
The output of (20) is a functor whose first argument Q2 is the complex QNP type in

(19) which 1s made out of the two object QNPs. The rest of the derivation is shown
in (21)."°

(24) (a) Syntax:
Meg show a-student -every -book p

NP1 (NPI\S)/((S/(NP2eNP3))\S) (S/(NP2eNP3))\S &
(NPI\S) g

S

97 in the derivation means that I have omitted the derivation from the lexical level to this
level.
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(b) Semantics:

Meg show a-student -every -book p
meg’ AQ02.Az.02(Ao.show'(ml(a))(m2(a))(z)) AR.some'(st)(Au.every’(bk")(Av.R(uev)))
Az.[AR.[some'(st")(Au.every' (BK)(Av.R(uev)))](Ao.show'(mtl (o)) (m2(e))(Z))] B red
Az.[some'(st")(Au.every’(bk")(Av.[Aa.[show'(m] (a))(m2(o)(z)](u®V)]))] B red
Az.[some'(St)(Au.every'(bk )(Av.show'(rt](uev))(m2(uev)(2))] = dist
Az.[some'(st)(Au.every' (bk)(Av.show' (1)(V)(2)))]
some'(st")(Au.every'(bk")(Av.show'(u)(v)(meg')))

nl and ©2 selects the left and the right members of wev, which are put into the

appropriate argument slots of show’. The only scope reading is: a student>every
book.

3.4 Application 2: PP construction

Next, I apply my analysis to the PP construction in (25a). (25b) is the lexical
assignment to the preposition fo. The other items have the same entries as in (21).

(25)  (a) Meg showed a (different book) to every student. a>every, every>a
(b) to: <to; (NP2\(NP3eNP2))/NP3; Ax.Ay.(xey) {of type (e,(e,(exe)))}>

Note that (25b) reverses the linear order between the two object NPs in the output.
This enables us to use the uniform entry for the verb show in both the
constructions.

As for scope alternation, (25b) does not have the normal output category S, as we
discussed for (15). Its output category is NP3eNP2. Because of this, we value raise
the output category (NP3eNP2) to (S/(NP3eNP2))\S.'' Then, we can apply

! See Hendriks (1987: 109) for value raising. Value raising is necessary in (26) and (27) to get
the semantics right. When we merge two QNP expressions of type (et)t, the output should not be
an expression of type exe; it should be a complex QNP expression of type (((exe),t),t), which
corresponds to the value-raised output category, (S/(NP3eNP2))\S. Value raising is also necessary
to make the scope switch process compatible with the syntactic calculus at the basic level. That is,
if the output category stayed as NP3eNP2 after the process as in (26) and (27), then the merge of
the argument-slot raised functor with two QNPs would produce the category, NP3eNP2. Omitting
the preposition category for convenience, this process corresponds to the sequent, (S/NP)\S, ((z0),
(S/NP)\S) + (NPeNP). This sequent has the same effect as type lowering (though it is by way of
binary merges, rather than a unary operation). Type lowering, such as (S/(NPeNP))\S + NPeNP, is
not provable in NL (i.e. it is not supported by NL), and we do not want an operation that goes
against this basic property of the grammar system.
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argument-slot raising to this functor in two different orders, deriving two scope
readings.
Order 1. Argument & value raising to the preposition zo, the surface scope reading.

(26)  (a) Syntax: (NP2\(NP3eNP2))/NP3 = (NP2\((S/(NP3eNP2))\S))/((S/NP3)\S)
= (((S/NP2)\S)\((S/(NP3eNP2))\S))/((S/NP3)\S)
(b) Semantics: Ax.Ay.xey = AQ1.Ay.AR.Q1(Ax.R(xey))
= AMOINQO2.AR.Q2.(Ay.Q1(Ax.R(xey)))
Types: O1, O2: (et)t; R: ((exe),t); x, y: e.

Order 2. Argument & value raising to the preposition 7o, the inverse scope reading.

(27)  (a) Syntax: (NP2\(NP3eNP2))/NP3 = (((S/NP2)\S)\((S/(NP3eNP2))\S))/NP3
= (((S/NP2)\S)\((S/(NP3eNP2))\S))/((S/NP3)\S)
(b) Semantics: Ax.Ay.xey = Ax. AQ2.AR.Q2(Ay.R(xey))
= AQIAQ2AR.Q1.(Ax.Q2(My.R(xeY)))

Note that in (26b), the argument slot for the left object QNP (= Q2) takes wide
scope over the argument slot for the right object QNP (= Q1), representing the
surface scope reading. The scope relation is the opposite in (27b), representing the
inverse scope reading. For lack of space, I only show the inverse scope derivation
by applying the output of (27) to its two QNP arguments.

(28) (a) Syntax:

a-book to every student
(S/NP2)\S  (((S/NP2O\S)\((S/(NP3eNP2)\S)/((S/NP3NS)  (S/NP3)S &
((S/NP2)\S\((S/(NP3eNP2))\S) &
((S/(NP3eNP2))\S)

(b) Semantics:

a-book to every student
AB.some'(bk)(Au.Bw)  AOLAO2.AR.OL(x.02(M.R(xey)))  dd.every (st w.A(v) &
AQO2.AR.every'(stY(Av O2(Ay.R(vey))) &
AR.every'(st")(Av.some’(bk")(Au.R(veu))

The logical expression in the bottom line shows the scope relation: every>a, which
is the inverse scope reading. If we use (26), instead of (27), we can derive the
surface scope reading. I only show the result of its merge with its two QNP
arguments in (29).
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(29) (a) Syntax:  (S/(NP3eNP2))\S
(b) Semantics: AR.some'(bk")(Au.every'(st")(Av.R(veu))

I omit the derivation steps up to the sentential level, which is similar to (24).

4 Deductive views of Categorial Grammar.

In this section, I re-evaluate my proposal while taking the deductive nature of Type
Logical Grammar more seriously. It leads to the division of labour between the
logical grammar system and the lexical rules that are not fully supported by the
syntactic proof. I also generalize the initial proposal, which leads to slightly
different empirical predictions.

4.1 Type Logical Grammar
4.1.1 Basics

Type Logical Grammar (TLG) has been investigated by Morrill (1994), Moortgat
(1997) and others. TLG has developed from Lambek calculus (Lambek, 1958),
which reformulated the Classical Categorial Grammar (as in Ajdukiewicz, 1935
and Bar-Hillel, 1953) as a deductive proof system.'> Lambek’s introduction of the
multiplicative connective e led to the well-known derivability relation in (30). It
sets up the connectives /, \, and e as a residuated triple, which, informally, allows us
to move categorial formula components between the antecedent side and the
succedent side of sequents, where each sequent has the form,

Sequent: Antecedent + Succedent.

30) BFAWC < AeB+C < A+C/B

To show categorial derivation, I have used natural deduction presentation (ND) so
far. ND 1s useful for showing step-wise composition of interface representations
(such as typed lambda expressions at LF) from lexical levels. But in order to show
the derivability/provability of non-standard combinatory rules (such as function
composition and type lifting) from the basic axioms of the grammar, the so-called
Gentzen sequent presentation is more useful, which I use in this section.

21 do not provide a detailed history of Categorial Grammar. See Versmissen (1996) and
Bernardi (2002) for such development.

" Bernardi shows that the pair of / and \ alone (i.e. without e) already exhibits a certain kind of
residuation, supported by the provability of the sequent A + (B/A)\B. See Bernardi (2004: 130).
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Before I show the axioms in that presentation, I provide the standard definitions
of the set of (categorial) formulas and the set of structures.
The set F of (categorial) formulas is defined as in (31).

(31) F:u=At|FIF|F\F|FeF

At 1s the set of atomic formulas, such as NP, N and S. Given Af, we close the set F
by successively applying binary connectives /, \ and e to any two formulas, either
atomic or derived, creating complex formulas such as NP\S, S/(NP\S) and
(NP\S)/(NPeNP). Not all the members of F' have to be included in the lexicon of
natural languages. A¢ might presumably be universal across languages, but each
language typically has a different set of complex-categories in its lexicon. For the
presentation of the axioms and proofs, I use formula meta-variables A, B, C...e F.

Given F, S represents the set of structures, which configure formulas into certain
structures.

32) S:=F|(SY9)

Example structures are (NP, NP\S) and (NP, ((NP\S)/NP, NP)). In NL, which is
non-associative and non-commutative, the bracketing and the left-to-right order are

taken seriously. That is, (A, (B, C))<((A, B), C), and (A, B)<»(B, A). I use the
standard structural meta-variables I', I'', A, A’... € §.

4.1.2 Gentzen sequent presentation.

The axioms are made out of the identity axiom and the so-called logical rules,
which are pairs of Left and Right rules for /, \ and e. The cut axiom is convenient
for presentation reasons, but has been proved to be admissible.'* Thus, we can omit
the cut axiom out of the system without influencing the provability of any sequent.

(33) Identity Axiom: A+ A Cut T rA A[Al+ B cu
A[T]+ B

(34) Logical rules:
(/L ABIrC TrA /R T,A)rBnr
A[(B/A,T)] + C I' + B/A

' That is, whenever we can prove a sequent by using Cut, we can also prove it without Cut. See
Versmissen (1996: 9-11) for some cut elimination proofs.
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(b)\L T+A A[B]l+Cy \R  (A.) By
A[(T, A\B)] + C T'+AB

(c) oL T[(A.B)]+ C .. FT'tA ArBux
T[(AeB)] + C (T, A) + (AeB)

The notation I'JA] means that the constituent structure A occupies a distinguished
position in the structure I containing it.

Given the axioms in (33) and (34), the grammar aims to prove goal sequents,
which represent syntactic derivability relations. (35b) is an example of a goal
sequent that is provable in NL.

(35) (a) Antecedent - Succedent
(b) (NP, ((NP\S)/NP, NP)) + S

The antecedent is a member of the set S in (32). In Lambek Calculus, the
antecedent structure cannot be empty. The succedent is exactly one formula, such
as S, S/NP, but not a complex structure, such as (NP, NP\S).

As an example, I provide the proof of the sequent (35b) for the sentence Tom
loves Meg, with the lexical entries as in (4) in section 2.

(36) NPFNP SFSy
NP, NPSFS NPFNP,
(NP, (NP\S)/NP, NP)) I S

We start each proof with atomic identity axioms, as the top line of the proof in (36)
shows.'> From bottom to top, each step of the proof eliminates one occurrence of a
connective. This is because the logical rules in (34) are set up in that way. Because
of this sub-formula property, Gentzen sequent proofs are decidable.'®

The next question is how we read off the PF-LF pairing from the Gentzen
sequent proof. I only provide some informal rules here. I provide more formal
interpretation rules in 4.1.3 and 4.1.4.

For each proof, we look at the sequent at the bottom line, that is, the sequent to

be proved. In (36), the goal sequent is (NP, (NP\S)/NP, NP)) + S. Replacing each

> For convenience, I start some proofs with non-atomic identity axioms (e.g. NP\S + NP\S).
But the complex identity axioms that I use can be derived from atomic identity axioms.

"“Though Cut can introduce an indefinite number of intermediate steps to proofs, it is
admissible, and therefore does not influence the decidability. See Versmissen (1996: 9-11).
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categorial formula with the corresponding PF and LF expressions (the lexical
assignments as in (4) show which categories correspond to which PF-LF items), we
can derive the PF and the LF sequents.

(37) (a) PF: (Tom, (love, Meg)) + (Tom-(love-Meg))
(b) LF: (tom’, (Iove’, meg")) + love'(meg’)(tom")

(37a) means that out of the three PF items, Tom, like, Meg, we can derive the

sentential expression (7Tom-(likes-Meg)). I abstract away from the relevance of the
binary structure in the phonological string, but ignoring the brackets, we get the
string Tom like(s) Meg. The LF sequent in (37b) represents the same kind of
derivability relation at the semantic level.

Though this informal PF-LF paring works in linguistic analyses, it is not very
satisfactory in some ways. For one, seeing the natural language syntax as a
deductive proof system, we want to set up the interpretation rules in such a way
that we can prove the soundness and completeness of the syntactic system with
regard to its intended interpretation (at the two interfaces). Though 1 do not have
any space to discuss the soundness and completeness proof, it is important to set up
the interpretation rules as in the semantics of logical languages. Also, we want to
know how the syntactic proofs based on categorical formulas derive the two
interface sequents as in (37a) and (37b) step by step. Because of these, in the next
two sub-sub-sections, I show the interpretation rules in a slightly more formal way.

4.1.3 Model Theoretic Interpretation at PF

In the Model Theoretic interpretation at PF, formulas (i.e. syntactic categories) are
interpreted as sets of phonological expressions. '’ For atomic formulas, the
valuation function v, maps members of Ar to the corresponding sets of
phonological expressions.

(38) (a) vo(NP) = {Tom, Meg, the-book...}
(b) vo(S) = {Tom-smoke, Tom-love-Meg, Tom-give-the-book-to-Meg...}

The atomic interpretation function v, is then extended to the general interpretation
function v as in (39).

7'We could interpret categorial formulas as sets of ordered pairs of phonological and semantic
objects. However, for convenience, I deal with the interpretations at the two interfaces separately.
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(39) (a)v(AeB)={ab|aev(A)&b e v(B)}
(b) (A\C)={ b | Va € v(A).(a-b € v(C))}
() WC/A)={b|Va e v(A).(b-a € v(C))}

For example, by (39b), v(NP\S)={b |VaeW(NP).(a-be v(S))}. If the PF unit smoke
is a member of V(NP\S), then for each aev(NP), the PF expression a-smoke must

be a member of v(S). The binary connective - over phonological expressions is
non-associative and non-commutative. That is, we interpret categorial formulas as
sub-sets of a groupoid.'®

The (syntactic) derivability relation expressed by F is interpreted as set-inclusion
(or sub-set) relations, as shown in (40).

(40) (a) Syntax: Antecedent + Succedent.
(b) Interpretation: ||Antecedent|| < ||Succedent]|.

4.1.4 Model Theoretic Interpretation of NL at LF

As in the phonological interpretation, we interpret categorial formulas as sets of
semantic objects, represented by typed lambda expressions."’

(41) (a) vo(NP)={tom’, meg', the book'...}
(b) vo(S)={smoke'(tom"), love'(tom’)(meg’), give'(meg')(the book’))(tom’)...}

The atomic function v, is extended to the general interpretation function v in (42).

(42) (a)v(AeB)={aeb|a e v(A)& b € v(B)}
(b) V(A\C) =v(C/A) = {b | Va € v(A).(b(a) € v(C))}

8 NL is complete for general groupoid models, but not for binary tree structures with tree
adjunction as addition. See Morrill (1994: 66-67) for this point, which refers to DoSen (1992) and
Venema (1994). See these references, and Versmissen (1996) for some soundness and
completeness proofs.

T abstract away from the issue of whether the lambda language represents an independent
level of semantic representation in the mind, or is just used as meta-representation of model
theoretic objects in the world. In either case, I assume that the interpretation of typed lambda
expressions as model theoretic objects is straightforward. See Gamut (1991: 83-91), for example.
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By (42b), if smoke’ is a member of v(NP\S), then for each aev(NP), smoke’(a)
must be a member of v(S).

(42b) interprets directional syntactic functors as sets of non-directional logical
functors. However, the multiplicative connective ® over lambda terms is non-
commutative and non-associative, which corresponds to the non-commutativity and
non-associativity of the syntactic system. We do 3 reduction in two directions, as in
(43a) and (43b). The argument should appear in the direction that the syntactic
functor category requires it. That is, to the left in (NPe®(NP\S)) for (43a) and to the
right in ((NP\S)/NPeNP) for (43D).

(43) (a) (tom'eAx.smoke’(x)) = (Ax.smoke’(x))(tom’) = smoke'(tom”)
(b) (x.Ay.love'(x)(y)emeg') = (Ax.Ay.love'(x)(v))(meg') = Ay.love' (meg’)(y)

As I mentioned above, we want to show how the typed lambda expressions as
meaning representations are derived in the syntactic proofs. This is easier to do in
Natural Deduction (ND) proofs that I used in section 3. ND proofs look like
linguists’ syntactic trees up-side down. Thus, we can decorate the leaf nodes with
lexical expressions, such as tom’, Ax.Ay.like'(x) and meg,’ and then successively
merge them to derive the result expression, such as like'(meg’)(tom’), at the root
node. In contrast, the Gentzen sequent presentation is not convenient for showing
the step-wise derivation of the concrete lambda expressions in this way. To show
how we derive the LF interface representations in Gentzen sequent proofs, we

decorate the proofs with a meta-language of typed lambda expressions. 2° The basic
idea is as in (44) (cf. Morrill, 1994: 16, 92-95).

(44) (A]Z X1, (AQZ X2, ...(An_ll Xn-1s Anl xn))) + B: ¢

For the formulas A;...A, in the antecedent of each sequent in the syntactic proof,
we provide typed variables xi, x»,..., x,. The typed variables xi, x,,..., x, represent
any lambda expressions of the semantic types corresponding to the syntactic
categories Aj...A,, according to the mapping function, type, in (7). The sequent in
(44) says that with variables x;...x, of the semantic types, type(A))...type(A,),
placed in the binary structural configuration, we can derive the logical expression

2% Labelled Deductive Systems, proposed by Gabbay (1996) and discussed by Kurtonina (1994)
in TLG, decorate categorial formulas with extra elements such as typed lambda terms and
phonological expressions. To them, lambda terms and PF expressions are part of the syntactic
structures and therefore, they need to define interpretation rules for them. I use typed meta-
variables as decorations just to show how we interpret the syntactic proofs step by step and then
produce concrete lambda expressions as a result. The proofs themselves are solely based on the
syntactic categories. I leave the different implications of these two assumptions for another paper.
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@, whose semantic type is type(B). Now if we replace the variables x;...x, in the
antecedent with concrete lambda expressions a;...a, of the right types, then in the
succedent of the sequent, we derive the lambda expression ¢, which is ¢ except

that a;...0, replaces x;...x, inside @. (45) provides an example of the use of this
meta-lambda-language in the goal sequent.

(45) (a) (NP: x1, (NP\S)/NP: x5, NP: x3)) + B: x2(x3)(x1)
(b) (NP: tom’, ((NP\S)/NP: love’, NP: meg’)) + B: love'(meg’)(tom")

In (45a), we label the syntactic categories with typed meta-variables. Replacing the
variables with concrete lambda expressions, as in (45b), we can show the specific
semantic sequent that we associate with the phonological sequent in (37a) via the
syntactic proof. Note that, in (45a), even though I used concrete categorical
formulas such as NP and (NP\S)/NP, rather than formula meta-variables such as A
and (A\B)/A (for presentation reasons), we still use the meta-variables xi, x;, x; for
the lambda expressions.

Now we decorate the axioms in Gentzen sequent presentation with meta-variables
for typed lambda expressions.

(46) Axiom: A:utr A:u Cut CrA:S A[A:u] + B
AIT'] F Blu: — 3]

(47) Logical rules:

(@)/L AB: X1+ C:y FrrA:r /R TAXNFB: ¢ R
A[(B/A: a, )] + C: y[X:—> a(P)] I' + B/A: \x.¢
MWL TCFA:B A[B: X+ C:vy \L \R (A:x, D +FB: ¢ r
AT, A\B: )] + C: y[X:—> a(B)] ' A\B: Ax.¢
(c)eL I'[(A:u,B: )] FC:y oL o RI'FA:u ArB:vese
I'[(AeB: uev)] + C: y[(u,v):—> uev] (I, A) + (AeB): uev
o(P) 1s free for Xiny.

x 1s a fresh variable.

Categorial formulas such as NP and NP\S are paired with lambda variables of the
corresponding types. I' and A represent binary structures made out of such pairs.
For example, I' might be (NP: x, (NP\S): P). Again, the variables are assigned
appropriate types according to the mapping function, type, defined in (7). For
example, type(NP) = e for x and type(NP\S) = (et) for P in the example in the
previous sentence. In (47), y[X:—a(B)] means that we replace the free variable X
inside the expression y with the expression (). In order to prevent an accidental
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binding in /L and \L, o) has to be free for X in y. That is, no free variable in a(J3)
ends up being bound by an operator in y.

In /R and \R, by saying that x is fresh, we mean that there is no free occurrence of
x inside I'. In each application of /R or \R, exactly one free variable x is bound.

As an example, I decorate the proof in (36) with typed lambda expressions.

(48) NP:x FNP:x S: X+ S: X,
NP: x, NP\S: P + S: X[X:>P(x)](=P(x)) NP:yrFNP:y ,
NP: x, (NP\SYNP: R, NP: y) + S: P(x)[P:=>R(V)] (= R(y)(x))
NP: x, (NP\S)/NP: R, NP: y) + S: R(y)(x) [instantiated as]
NP: tom’, ((NP\S)/NP: like’, NP: meg’) + S: like'(meg")(tom")

Types. R: (e(et)); P:(et);x, y:e

The sequent in bold face is the one that is proved in (48). Instantiating x as tom’, R
as like’' (= Au.Av.like'(#)(v)) and y as meg’, we have the sequent in the bottom line.
Note that the meta-variables are all replaced by constant expressions. This means
that use of (meta) free variables decorating Gentzen sequent proofs does not
necessarily lead to the problems that Jacobson (1999) mentions with regard to the
use of free variables in the concrete logical expressions that represent the meanings
of natural language expressions. We can easily assign the variable free
requirements at the level of the instantiated lambda expressions as in the bottom
line in (48).

In the next sub-sub-section, I discuss the provability of some of the higher order
rules that I used in my proposal.

4.2.1 Argument-slot raising and eR(Q)

In this sub-sub-section, I check the provability of the combinatory rules related to
the QNP categories.

In NL, argument-slot raising is provable only for the subject argument-slot, not
for an object argument-slot, as shown in (49).?'

2l Argument slot lowering is provable for all the argument positions. For example, NL can

prove the sequent, (NP\S)/((S/NP)\S) + (NP\S)/NP, for the object slot of transitive verbs.
However, in order to derive different categories (representing different scope readings) from the
uniform lexical category, the lexically assigned category should be the lower category, e.g.
(NP\S)/NP for transitive verbs. Thus, the scope switch mechanism that we use should be
argument slot raising, rather than lowering.
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(49)  Subject-slot raising: OK Object-slot raising: Not OK
SES  NP\S F NP\S | srreecesscenseensecnsaenns Lo
S/(INP\S), NPAS+S (NP\S)/NP, (S/NP)\S #+ NP\S
NP\S + (S/(NP\S)\S (NP\S)/NP + (NP\S)/((S/NP)\S)

Though NL can prove argument-slot raising only for the subject slot, it can merge
the raised functor category with its QNP arguments both for subject QNPs and
object QNPs. To show this, I first provide the proofs of the identity axioms of two
Generalized Quantifier (GQ) categories, for subject QNPs and object QNPs.

(50) NP+ NP StSy SFSNPFNP .
NP, NP\S F S S/NP,NP S r
SFS NP\S + NP\S SNPFSNP  SkSy
S(NP\S).,NP\SFS S/NP, (S/NP)\S F S &
S/(NP\S) + S/(NP\S) (S/NP)\S F (S/NP)\S 1

Given these identity axioms, we can prove (51).

(51) S/NP\S) F S/(NP\S) S¢S

S/(NP\S), (S/(NP\S)\S + S (S/NP)\S + (S/NP)\S
S/NP\S),  (((S/NP\S)\S)/((S/NP)\S),  (S/NP)\S) F S pF mapping
Every boy  loves some girl + S

(51) proves that we can use the argument-slot raised transitive verb category with
two GQ categories as its arguments without an association rule. In fact, we do not
even have to use different GQ categories for the subject and the object QNPs. I

could have replaced the identity axiom for the object QNP, (S/NP)\S + (S/NP)\S,

with the one for the subject QNP, S/(NP\S) + S/(NP\S).

I show how the syntactic proof in (51) derives the semantic sequent. I omit the
categorial formulas and only show the semantic meta-variables in (52), for
readability.

(52) 01+ 01 Xt X \L
Q1. P+ S: X[ X:—= P(O1)] =P(0]) Q2+ 02,
o1, (R, Q2) v P(QD[P:—> R(Q2)] = R(Q2)(Q1)

Meta-variable types: Q1, Q2: (et)t, P: ((et)t)t, R: ((et)t)(((et)t)t)
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Variables Q1 and Q2 are for GQ type expressions (of type (et)t). R is for the
argument-slot raised logical expressions for love. If we apply argument-slot raising
to love (with its lexical entries, (NP\S)/NP; Ax.Ay.love'(x)(y), in the syntax and the
semantics), then R can be instantiated as two argument-slot raised functors,
representing the two orders of raising its internal and external argument slots. The
two functor expressions in bold face in (53b) and (53c) are the two versions,
representing the two scope readings, the subject wide scope and the object wide
scope readings respectively.

(53) () 01, Ve 02)
(b) A.every'(boy')(A), (MQ2.AQ1.Q1(Ay.Q2(Ax.Jove'(x)(»))), AB.some'(girl')(B))
(¢) A.every'(boy')(4), (AQ2.A01.02(Ax.Q1(Ay.love'(x)(y))), AB.some'(girl')(B))

Of course, as (49) showed, NL cannot derive the argument-slot raised functors in
(53b) and (53c) from the lexical entries for the verb /ove. Because of that, (53) at
the moment can be derived only by using a purely ‘lexical rule’ which operates on
the verbal functor.”” Such a rule (e.g. as formulated in (15)~(17)) is not fully
supported by the syntactic system. On the other hand, once we are equipped with
the lexical argument-slot raising in (53), then the syntactic proof in (51) and the
derivation of the meta-lambda sequent in (52) based on that proof do not require
any association rule to merge the raised functor with its QNP arguments. The order
of the merges of the three expressions is the same both for (53b) and (53c), though
their scope readings are different. We can switch scope without an association rule.
Considering that a fully associative grammar system over-generates with regard to
the attested natural language data, this is one merit of the proposed scope switch
system.

I have achieved the more restrictive syntax at the cost of using a lexical rule that
is not fully supported by the logical grammar. This might be the last resort strategy
for TLG.? Also, the claim of restrictiveness should be evaluated with the total

22 It is slightly misleading to call this a ‘lexical rule’, because it needs to be able to take as input
certain non-lexical expressions, such as a complex predicate, as we see in section 5.

» Moortgat’s scope constructors as in Moortgat (1991) and the following efforts to derive the
constructors from the basic rules of the grammar can be interpreted as an instantiation of
Hendriks’ idea in TLG without making such a compromise. On the other hand, his analysis over-
generates without additional locality constraints that do not have any inherent relations to the
scope switch mechanism itself. Also, treating QNP scope in the same way as (in-situ) Wh
expressions, the analyses based on his scope constructor do not explain the different behaviours of
quantifier scope on the one hand, and Wh movement on the other, in terms of the observed
locality constraints. See Bernardi (2002) for a treatment of QNP scope using Moortgat’s scope
constructor in a Multi-Modal TLG setting.
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grammar system in mind, which might require some controlled introduction of
structural association. I will come back to this point in section 5.

Next, I discuss the (non)-derivability of eI(Q) in (22) from the basic el in (9). In
section 3, I used oI(Q) to merge the two object QNPs.

First, when the two objects are normal NPs, it is easy to prove the derivation of
VP (which is used as shorthand for NP\S), using the proposed ditransitive category
formula, shown in Gentzen sequent presentation in (54).

(54) NPFNP NPNP.;
VP F VP (NP,NP)F (NPeNP) |
VP/(NPeNP), (NP, NP) + VP

o] in Natural Deduction presentation is eR in (34c) in Gentzen sequent
presentation. Then, oI(Q) in (22) will be eR(Q), which merges (S/NP1)\S and
(S/NP2)\S in this left to right order, producing (S/(NP1eNP2))\S as the result.
R (Q), however, is not easily provable from eR.

We can derive the categorial formula (S/(NPeNP))\S from two NPs.

(55) NP + NP NP NP . Ukru  vFE Ve
SES (NP, NP)  NPeNP . XX (u, v) F (uev)
S/(NPeNP), (NP, NP) F S « R, (u.v) F X[X:—> R(uev)] = R(usv)r

(NP, NP) I (S/(NPeNP))\S (u, v) + AR.R(uev)

However, this does not work. We want to merge two QNP categories, not two NPs,
to derive (S/NPeNP)\S. In (55), the derived (meta)-lambda expression, AR.R(uev),
is not the one that we want. The sequent that we want to prove is the one in (56),
for the expression (Tom showed) a student every book.

(56) (a) Syntax: (S/NP)\S, (S/NP)\S + (S/(NPeNP))\S
(b) LF: A4.some'(st")(A), AB.every'(bk')(B) + AR.some'(st")(Au.every'(Av.R(uev)))
(c) PF: some-student, every-book t+ (some-student)- (every-book)

(56) is not provable in NL. Part of the reason is that the type lowering is illegal.
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(57) (S/NPINS F NP1 (S/NP2)\S F NP2.r (!1* line, not provable)
SES ((SANP1\S), (S/NP2)\S) + NP1eNP2 ;.
S/(NP1eNP2), ((S/NPI)\S, (S/NP2)\S) + S \r
(S/NP1)\S, (S/NP2)\S F (S/(NP1eNP2))\S

(57) is not provable in NL because the sequent (S/NP)\S + NP is not provable.
Though I do not go into details, introducing a structural association rule to the
grammar (in a modally controlled way) does not easily solve the problem either.
Note that the un-derivability of eR(Q) from eR is far more problematic than the
un-provability of argument-slot raising (for object slots). This case is about the
merge of two syntactic categories, which is certainly a matter of syntax. It also has
to do with the compositional derivation of the semantic meaning of the two object
QNPs combined from the lexically assigned meanings of the two QNPs. However,
without an easy solution at hand, I leave the non-provability of eR(Q) in the current
grammar system for further research. eR(Q) stays as an axiom for the moment.

4.2.2 Generalizing the argument-slot category raising.

As I pointed out in the last sub-sub-section, the reformulated argument-slot raising
in (15), repeated here as (58), is a lexical process. Because of that, there is nothing
wrong about defining the rules over specific input categories.

(58)  (a) (NPI\T)/NP2, where T is normally S.
(b) (NPI\T)/NP2 = (NPI\T)/((S/NP2)\S) = ((S/(NPI\S)\T)/((S/NP2)\S)
(c) (NPI\T)/NP2 = ((S/(NPI\S)\T)/NP2 = ((S/(NPT\S)\T)/((S/NP2)\S)

However, generalizing the input categories might still have some merits, including
better empirical predictions. For example, while maintaining the assumption that all
the functor categories have maximally one syntactic argument selection at each
side, we can generalize these argument-slot categories into A and B, rather than
limiting them to NP arguments, as shown in (59a). We can also generalize the goal
category as C.

(59)  (a) (B\C)/A
(b) (B\CY/A = (B\C)/((C/A)\C) = ((C/(B\C)\C)/((C/ANC)
(¢) (B\C)/A = ((C/(B\C))\C)/A = ((C/(B\C))\C)/((C/ANC)

After generalizing (58) as (59), the semantic computation will also be generalized
as in (60) and (61).
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(60)  (a) Type Shift: (a,(b, ¢))) = (((a,c),c),(b,c))) = (((a,),0),(((b,c),c),c))
(b) Semantics: P = AQIALQOI(Aa.P(a)(p) =
AQIANQ2.02(ML.01(Aa.P() (1))
(61)  (a) Type Shift: (a, (b, ¢)) = (a,(((b,c),c),c)) = (((a,¢),c),(((b,c),c),c))
(b) Semantics: P = Aa.AQ2.02(ALBP(a)(p) =
AQILNQ2.01(Aa.Q2(MLLBP() (D)),
where QI: ((a,c),c), O2: ((b,c),c), and e a, £: b.

The question is whether the generalized argument-slot raising over-generates scope
readings. It does lead to more scope readings than the less general rule in (15). As
an example, when all the three arguments of the ditransitive verb are QNPs in the
DO construction, as in (62), the revised analysis predicts that the two object QNPs
together can take wide scope over the subject QNP.

(62)  (a) A (different) teacher showed me every book.  a > every, every > a
(b) A (?*different) teacher showed a (certain) student every book.
a teacher > a student > every book, 7*a student > every book > a teacher ...

In (B\C)/A in (59), A and B can be any argument category. If we instantiate A as
NPeNP, B as NP and C as S, then we get the category that I use for ditransitive
verbs in English, that is, (NP\S)/(NPeNP). Now, we can apply the argument slot
raising to the two arguments, that is, the subject NP and the complex object,
NPeNP, in two orders. The scope relation between the two object QNPs is still
fixed as the surface scope, because there is no intervening functor between the two
object QNPs, but we can switch the scope of the two QNPs together and the scope
of the subject QNP. (62a) has the reading in which the right object QNP every book
can take scope over the subject indefinite a teacher. This judgment supports the
more general formulation in (59) as opposed to (58).%* The inverse scope reading in
question, a student > every book > a teacher, is more difficult to get in (62b).
However, some speakers do get this reading in adequate contexts, and the difficulty
might be because of the processing complexity of dealing with the scope of three
QNPs, not because of the impossibility of the scope switch in the formal system.

* The left object me is lexically assigned the category NP. Though it is type raised to (S/NP)\S
in the syntactic derivation (i.e. for the syntax to merge me with the lexically higher order every
book by eR(Q), producing the complex object category (S/(NPeNP))\S), the logical term for me
(say, the_speaker’) of type e) is put back to the corresponding argument slot of the logical
expression show’ in the normalized logical form. The normalized logical form for the inverse
scope reading will be: every’(book’)(Ax.some’(teacher’)(Ay.show’(the_speaker’)(x)(y))).
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Considering that we have to derive the inverse scope reading for (62a) somehow,
the more general argument-slot raising in (59) (with the semantics as in (60) and
(61)) might be preferable than the initially proposed argument-slot raising.

Also, the more general argument-slot raising in (59) still does not allow a scope
switch across a tensed clause. Thus, some desirable locality constraints still fall out
from the proposed analysis.

(63) (a) A boy said that Tom liked every girl.
a boy > every girl, *every girl > a boy

(b) say: <say; (NP\S)/S; L@.Ax.say'(4)(x) {of type (t(et))}>

Computationally, we can apply the argument-slot raising to the two arguments of
(NP\S)/S for say, deriving the category, (((S/NP)\S)\S)/((S/S)\S). However, in
whichever order we apply the two argument-slot raisings, we cannot alternate the
scopes of the two QNPs. The categorial type that the grammar derives for the string
that Tom liked every girl is S and its semantic type is t. Even though the grammar
system raises this embedded clause category S to (S/S)\S, normalization on the
logical form places the embedded type t expression back into the internal argument
slot of say’ (the position of the variable ¢ to the right in (63b)).” If any QNP is
contained in the type t expression that fills the internal argument slot of say’ in the
normalized form, then that QNP cannot take scope outside that argument-slot. In
other words, the QNP’s scope cannot go beyond the embedded clause.

Because QNPs ‘bind’ type e argument-slots, in order for a QNP to take scope
long-distance, we have to create a complex functor of the form (NP\C)/NP, (rather
than (NP\S)/S, for example). We have already seen that in NL, we cannot treat the
string say that Tom likes in (63a) as (NP\S)/NP, because of the lack of an
association rule.

In this sub-section, we saw that the argument-slot raising is not fully supported by
NL. Though this means that we have to have it as a separate lexical rule, we can
keep the syntactic system more restrictive. The rule eR(Q) is not provable from the
basic axioms, and thus, stays as a separate axiom, a problem left for further
research. I have also shown that I can generalize the proposed argument-slot
raising, by defining it over general categories such as A, B, C, without losing the
good points of the initial proposal, such as strong locality constraints falling out
from the system.

> This proof for (63a), in which we type raise the argument S to (S/S)\S, to which the
argument-raised functor category (QNP\S)/(S/S)\S is applied, can be normalized to a proof in
which neither the type raising nor the internal argument slot raising takes place. Such spurious
ambiguity of the proof is a weak point of the Gentzen sequent presentation, not of the abstract
proof system, which might be better represented by another presentation.
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In the next section, I briefly discuss the locality of quantifier scope and the
necessity of a controlled introduction of a structural association rule and its
implication to my proposal.

5 Locality
In this section, I briefly discuss locality constraints on QNP scope in my analysis.?

(64) (a) A girl loves every boy. a>every, every>a
(b) [An [apple [in [every box]]]] was mouldy.  #a>every, every>a
(c) A teacher stood in front of each classroom.  a>every, every>a

For (64a), we simply apply argument-slot raising to the functor /ove in two orders,
deriving the two scope readings, as we have briefly seen in section 3.

(64b) is harder to deal with. For a sentence as in (64b), the preposition in is
normally assigned the following lexical entry (cf. Carpenter 1997: 233).%

(65) in: <in; (N\N)/NP; Ax.A4.0y.(A(y) A in'(x)(y))> {semantic type: e((et)(et))}

My analysis can derive the surface scope reading easily. I apply the argument-slot
raising to the single NP argument-slot in (N\N)/NP. Ignoring the details, the output
of this operation is (66a) (in* shows that the functor has been argument-slot raised).

(66) (a) in®: <in; (N\N)/((S/NP)\S); AQ1. XA y.(A(y) A Q1(Ax.in'(x)(¥)))>
Variables, QI: ((et)t); 4: (et); x, y: €
(b) a: <a; (S/(NP\S))/N; AA.AB.some'(4)(B)> {some’ of type (et)((et)t)}
(c) apple: <apple; N; Ax.apple'(x)> {apple’ of type (et)}
(d) every box: <every -box; (S/NP)\S; AB.every’'(box")(B)> {type (et)t}

Then, (66a) 1s merged with the QNP every box and the common noun apple in this
order. Next, the indefinite determiner, a, as in (66b) takes this output as an

26 (64b) is by Cormack (p.c), though I have changed the determiner some to an.

" The PP, in every box, occupies a different structural position in a sentence such as, John
[[found [an apple]] [in every box]], as the bracketing suggests. (Thanks to Cormack for pointing
out the structural difference). In this case, the right QNP is merged later than the indefinite NP,
and thus, we can naturally derive the scope relation, every>a. Though I do not discuss how to
derive the scope reading, a>every, in this paper, this sentence is easier to deal with than (64b),
because the PP every box is not contained inside the indefinite NP.
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argument. Thus, we derive the surface scope logical expression for an apple in
every box, as in (67). The bracketing in PF represents the order of the merges.

(67) (a) category: S/(NP\S)
(b) LF: AB.some'(Ay.(apple'(y) A every'(box")(Ax.in'(x)(y))))(B)
(c) PF: (an -(apple -(in -(every -box))))

Merging the QNP in (67) with the VP was mouldy produces the logical form,
some’(Ay.(apple’(y) A every'(box’)(Ax.in’'(x)(»))))(Ay.mouldy’(y)) for (64b). In actual
communication, it is difficult to interpret the sentence in (64b) with this surface
scope reading, but I assume that this is only a pragmatic difficulty.

The inverse scope is harder to derive. The category (N\N)/NP for in does not have
an NP argument-slot for the QNP, some apple. Note that we cannot simply assign
an alternative lexical category in the form of (NP\T)/NP (where T is some output
category), ignoring the subject (Q)NP structure indicated by the brackets in (64b).
As in (67b), the expression in’ has to appear inside the nominal restriction of the
existential determiner some’ (i.e. the A position in the form, some’(A)(B)). If we
merged the determiner a and the noun apple before we merge the result with the
PP, in every box, this would already fix the nominal restriction, as we can see in the
expression, AB.some’(Ay.apple(y))(B). Then we would not be able to incorporate
the PP logical expression into the nominal restriction part any more.

However, given the standard entry for in as in (65), we can apply value raising, as
well as argument-slot raising. Ignoring the details, this produces the argument-slot
raised and value raised functor for in, as in (68).

(68) (a) Category: (N\(((S/(NP\S))/N)\(S/(NP\S))))/((S/NP)\S)
(b) LF: AQ.AAAD.AB.Q(Ax.D(Ay.A(y) A in'(x)(»))(B))
The expression is of type, ((et)t), ((et), (((et)((et)t)), ((et)t))), where
the variable types are, Q: (et)t; 4, B: (et); D: (et)((et)t); x, y:e

In (68a), the NP argument-slot of in has been raised to (S/NP)\S, for the QNP,
every box. I have also value raised N to ((S/(NP\S))/N)\(S/(NP\S)) (which is in bold
face in (68a)). Given the other items as in (66), we derive the following output for
the QNP, an apple in every box, which leads to the inverse scope reading.

(69) (a) Category: S/(NP\S)
(b) LF: AB.every'(box")(Ax.some'(Ay.apple’(y) A in'(x)(y))(B))
(c) PF: (an -(apple -(in -(every -box))))
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The order of the merges stays the same for (67) and (69), but in (67), the
determiner, a, is merged as a functor, while in (69), it is merged as an argument, as
a result of the value raising to in. This functor-argument alternation is supported by
NL, which does not distinguish the structural positions of functors and arguments.
Thus, other than the object-argument-slot raising part of the proposed scope switch
system, the analysis is still within the non-associative grammar system, NL.

Given some adequate lexical entries, we can treat the string stand in front of in
(64c) as of category (NP\S)/NP, deriving the scope ambiguity within NL.

Infinitival constructions as in (70) require some more sophistication. As (70) is
scopally ambiguous, we want to treat the string try to review as a complex
predicate. But, if we treat ty as (NP\S)/(NP\S), and (z0) review as (NP\S)/NP, then
we cannot derive a category form of (NP\T)/NP in the non-associative system NL.

(70) A student tried to review every paper. a>every, every>a

However, we can assign multiple categories to the functor t7y, so that it can be
applied to verbal functors of various arities, while preserving the number of the
arguments of the verbal functors, as shown in (71).2* %

(71)  try: (a) <try; (NP\S)/(NP\S); A 4. Ax.try'(4)(x)>
(b) <try; ((NP\S)/NP)/((NP\S)/NP); AP.Ax.\p.try' (P)(x)(y)>
(c) <try; (INP\S)/(NPeNP))/((NP\S)/(NPeNP)); AR A Ay.try'(R)()(y)>
Variable types. 4: (et), P: (e(et)), R: ((exe),(e,t)), a: exe, x, y: e

In order to avoid polymorphic category assignments as in (71), we could introduce
associativity in a modally controlled way, as I briefly explain later. However, there
seems to be a significant linguistic difference between the complex predicate
formation as in try to review or may have reviewed as in the sentence, 4 student
may have reviewed each paper, on the one hand, and the phenomena that roughly
correspond to A-bar movement in the traditional linguistic theory. I do not have
space to discuss the differences here, but the bottom line is that I want to reserve
the introduction of a controlled association rule to capture the latter phenomena, not
the former, and hence, choose to use the more complex lexical assignments as in
(71) to switch scope in the infinitival constructions. Further sophistication is

%% Thanks to Michael Moortgat for suggesting this line of analysis.

¥ Alternatively, we can use a type variable in the lexical category, as in <try; X/X; try’>, where
X can be instantiated as different functor categories such as (NP\S) and (NP\S)/NP and the
semantic term try’ is assigned the corresponding semantic types. Though these two formulations
have different implications elsewhere, they have the same implication in the current discussion.
That is, the syntactic system can stay non-associative.
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required to explain object control constructions as in (72), thought I leave such
cases for another occasion.

(72)  An editor asked Tom to review every paper. a>every, ?*every>a

Note that we have switched scope only within a tensed clause within the associative
system NL. It is very difficult to treat a string across a tensed clause as a complex
predicate without introducing a structural association rule to NL.

(73) (a) Two teachers reported that every student smoked.
two>every, *every>two
(b) Two editors [wondered if Tom had reviewed] every paper.
two>every, *every>two

Inability of the proposed scope switch system to treat the italicised expression in
(73b) as a complex predicate correctly predicts that the sentence does not have the
inverse scope reading. In (73a), the italicized expressions are discontinuous in the
PF string and my analysis strongly predicts that the scope switch is impossible,
which is supported by the data. Thus, the scope-switch system naturally leads to the
roughly tensed-clause bound locality constraints on quantifier scope.

Though my analysis can explain the scope data within NL, the total grammar
system will still require a controlled introduction of association rule. For example, I
have to explain Wh movement of one of the objects in the two kinds of ditransitive
constructions, which will require an association rule.

(74)  (a) Who [did Meg give each book to] (t;)?
(b) What, [did Meg give to each student] (t;)?

Without going too much into details, we want to treat the italicized expressions
(without the trace positions) in (74a) and in (74b) as categorial type S/NP,** while
the Wh expressions of category Wh/(S/NP) take them as arguments. In order to do
this, however, we need to use a structural association rule.

Morrill (1994), Moortgat (1997) and others have shown that, by using unary
operators in categorial formulas, it is possible to introduce association/permutation
into NL in a controlled manner, so that the grammar will not collapse into a fully

3% In the multi-modal TLG as in Moortgat (1997), S/NP might be S/ONP (or Q/ONP, if the do-
inversion changes S for declarative sentences to Q for question sentences), where, informally, the
unary operator ¢ marks the category that triggers structural association. The Wh functor would
then be Wh/(S/ONP), then, where Wh is the category for Wh question sentences. See Vermaat
(2006) for a detailed analysis of Wh constructions.
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associative/commutative system. On the other hand, as I mentioned in footnote 23,
these analyses, which treat Wh movements and QNP scope by using the same
schema, fail to explain the rather peculiar locality constraints that are applicable
only to quantifier scope, but not to Wh movement (e.g. QNP scope roughly stays
within the tensed clause, while Wh movement is generally not blocked by a mere
tensed clause). The challenge for me then is whether I can introduce associativity to
the grammar system in the way that respects the differences between Wh
movements and QNP scope. A merit of my proposal is that the locality of QNP
scope is a result of the scope resolution system in terms of the functor that takes the
QNP as a syntactic argument. In other words, the scope of a QNP should stay
inside the domain of the functor that takes it as a syntactic argument (by way of
argument-slot raising), unless some larger quantificational phrase that contains the
QNP as its sub-expression takes a wider scope with regard to the functor of that
larger quantificational expression.’’ Whatever association rule I will add to the
basic grammar system NL should not destroy this merit. I leave this investigation
for further research.

5 Conclusion

For scope alternation, the proposed NP argument-slot analysis based on Hendriks
(1987) requires an overt functor of the category form (NP\T)/NP between the two
QNPs. This explains why the scope relation between the two object QNPs is frozen
in the double object construction, as opposed to the prepositional construction. We
have an overt functor only in the prepositional construction. Formulated in the non-
associative grammar NL, it leads to certain locality constraints. Instantiating my
proposal in a deductive grammar system requires the definition of argument-slot
raising as a lexical operation that is not fully supported by the logical grammar
system. However, being equipped with this lexical operation, we can switch QNP
scope within NL. Generalizing the argument-slot raising so that it will be
applicable to (B\C)/A, rather than more specific (NP\T)/NP, might lead to a better
result. As well as this generalization of the argument-slot raising, I leave for further
research the derivation of an axiomatic ¢I(Q) rule from the basic axiom el and the

31 As an example, consider the PP ditransitive construction with a subject QNP and an object
QNP, such as 4 teacher showed [qpp2 [opr1 every book] to Mary]. Though the scope of every book
as QDP1 stays within the domain of the preposition fo, that is, the domain marked by the outer
pair of square brackets. QDP2 that contains QDP1 resolves its scope with regard to its functor
showed. As a result, QDP1 can take wide scope over the subject QDP, a teacher.

32 Considering that the tense information is relevant to the locality of QNP scope, how to
incorporate tense into TLG should be part of this investigation.
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controlled introduction of structural association into the grammar system to explain
more complicated data such as Wh movement.
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