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Abstract 

Existing measures of speech intelligibility and speech quality 

can be ineffective for evaluating new types of speech 

communication systems, such as wideband audio codecs, 

digital hearing aids and noise-reduction systems. We propose 

that new performance-based evaluation methods are required 

which tap into the cognitive effort listeners employ to 

understand speech through such systems. We present an 

example of such a method, based on the correction of 

transcripts of fluent spontaneous dialogues, and evaluate it for 

six different signal qualities, including telephone, added noise 

and noise-reduced conditions. We show that signal quality has 

a significant effect both in terms of transcript error detection 

accuracy and in terms of processing speed. We also show that 

in this test noise-reduction did not have any beneficial effect, 

despite the commonly recorded opinion that noise reduction 

improves signal quality. 

Index Terms: speech quality, objective measures, proof-

reading 

1. Introduction 

Speech signal processing technologies are exploited in the 

telecommunications, hearing aid, speech technology and 

forensic audio industries. Using these technologies speech 

signals are, among other things, encoded, decoded, 

compressed, companded, filtered, equalized, synthesized and 

noise-reduced. But with these processing techniques comes the 

necessity to assess their impact on the users of a speech 

communication system. Evaluation methods are required to 

check that systems are of adequate performance for their 

application. Evaluation can also be used to compare one 

system with another, to determine the optimal settings for 

processing parameters, or to aid in the development of new 

technologies. However, it is still unclear how best to evaluate 

a speech communication system. How should one assess a 

wide-band speech coder? An equalizer? A speech synthesis 

system? A noise-reduction system? 

The "gold-standard" for the assessment of speech 

communication systems is intelligibility testing. Spoken 

utterances are processed through the system under test to 

listeners who immediately report back what was said. 

Intelligibility, measured in terms of % words correct can then 

be compared to the scores obtained from the utterances before 

processing to provide an objective estimate of the change in 

intelligibility caused by the system. Such testing has a long 

history in the telecommunications area, building on the work 

of Harvey Fletcher [1], and has been the subject of much 

empirical analysis. Modern testing protocols ensure reliable, 

sensitive and unbiased scores from a panel of human listeners 

[2]. Furthermore intelligibility testing has also given rise to 

predictive models of the change in intelligibility caused by 

processing.  For example, the Speech Intelligibility Index (SII, 

[3]) provides a good account of changes to intelligibility 

caused by changes in gain or by linear filtering within a 

system.  

When intelligibility testing is performed as a function of 

the signal-to-noise ratio (SNR) of the speech, a typical 'S'-

shaped psychometric function is obtained. The slope of the 

curve is related to the redundancy in the speech materials. 

Meaningful sentences, where the context aids the recognition 

of ambiguous words, tend to have steep functions (small 

changes in SNR leading to big changes in intelligibility), while 

less-redundant materials, for example digits, tend to have 

shallower curves. The SNR value corresponding to the 50% 

intelligibility point on the curve is called the Speech reception 

Threshold (SRT). A common way to express the effect of a 

test system or channel on intelligibility is in terms of an 

"equivalent" change in the SRT caused by a change in SNR. 

Thus if some telecommunication system decreased 

intelligibility by some fraction, that change can be expressed 

as an equivalent change in SNR measured in dB. 

From this description it should be easy to see that this kind 

of performance testing is of no use when the system under test 

makes very little change to intelligibility. Testing is 

particularly problematic when the intelligibility of the speech 

is high, the psychometric function is flat, and large changes in 

SNR provoke only small changes in intelligibility. 

Intelligibility testing then loses statistical power, since much 

larger experiments are required to estimate the changes in 

intelligibility scores with any degree of reliability. 

Unfortunately, there is now an urgent need to assess the 

performance of systems that have very little impact on 

intelligibility. Presented with good quality speech on their 

input, modern telephones, VOIP systems or hearing aids 

output speech of high intelligibility. In speech synthesis, 

modern systems produce highly intelligible read speech from 

text [4]. Likewise contemporary noise reduction systems have 

been shown to make only minor changes to intelligibility [5]. 

With these systems, evaluation through conventional 

intelligibility testing makes no sense: it is neither effective 

(because of the difficulty of measuring small changes in 

intelligibility where the psychometric function is flat),  nor 

relevant (since the goals of much contemporary speech signal 

processing is not to maximise intelligibility). This has become 

known as the challenge of measuring "speech quality" rather 

than intelligibility. What matters about such systems is not the 

intelligibility of the speech but factors such as "clarity", 

"comfort", "listening effort", "fatigue", or "pleasantness". 

Evaluation has changed from being about the primary goal of 

communicating word identity into being about secondary or 

"emergent" properties of communication related to the 



cognitive processing performed by listeners to satisfy the 

primary goal. 

In this paper we set out an experimental methodology 

which seeks to investigate listener performance in a speech 

communication task even with speech of high intelligibility. 

Our aim is to work towards objective tests of speech quality 

that can be used to complement intelligibility testing. First we 

will discuss what is wrong with existing measures of speech 

quality, and the design goals for our new performance-based 

alternative. 

2. Measuring Quality 

Unfortunately, if you mention the term "speech quality" to a 

telecommunications engineer, he or she will think you are 

talking about the "mean-opinion-score" (MOS) rating scale of 

quality as defined by a number of industry standards (e.g. ITU 

P.800 [6]).  The use of the MOS quality measure, in which 

listeners are asked to rate speech signals on a scale of 1-5 

between "poor" and "good", is widespread and firmly 

established in the industry as synonymous with quality itself. 

It is not hard to demonstrate the weaknesses of such a 

simple rating scale for assessing quality: (i) that listeners 

opinions of quality are based on many signal characteristics, 

and (ii) that listeners vary in the weight they give to different 

characteristics; (iii) that variability across and within listeners 

lead to experiments of low statistical power; (iv) that listeners 

are easily biased by the experimental conditions; (v) that 

experiments are short and untypical of everyday 

communication tasks; and (vi) that what listeners prefer is not 

the same as what is best for them. On the last point, it has been 

shown that listener scores vary even with the presentation 

level of the signals and that the best scores for a system can be 

obtained at levels other than the ones preferred by the 

listeners! [7]. 

The use of MOS to measure speech quality is, we propose, 

an admission of a failure to find an adequate operational 

definition of quality. The MOS scale is a way of obtaining an 

average opinion about the quality of a system without having 

to come to terms with what quality actually is. 

So what makes a "quality" system? Harvey & Green [8] 

provide some possible definitions: 

o a quality system is exceptional, that is, it stands out 

from amongst its peers, or 

o a quality system is an expression of perfection, that is, 

it has no identifiable defects, or 

o a quality system is fit for purpose, that is, it meets a set 

of goals set out for its application, or 

o a quality system provides value for money, in that its 

performance and its cost are in balance, or 

o a quality system is transformative, that is, it makes a 

step-change to the experience of its users. 

From these, the definition that is perhaps most relevant to 

our current application and the easiest to operationalise is 

"fitness for purpose". If we could establish a set of criteria 

based on users’ requirements and expectations, we may be 

able to create a quantitative scale of the extent to which a 

system is fit for its purpose. 

Taking a system designed for communication of speech 

signals, what qualities would users expect a system to have 

aside from good intelligibility? Our suggestion is that the 

system should facilitate communication, in other words that it 

should make the job of working on speech tasks less effortful. 

This may not be the only possibility, users may like the signal 

to have a particular timbre, or sound "pleasant". But gauging 

quality in terms of listener effort - how much cognitive work 

the listener has to put in to complete their everyday tasks - is at 

least amenable to objective quantification. Also there are 

established cognitive models of effort, which make a link 

between the complexity of the task and the extent to which 

subjects make mistakes, lose attention, or become tired. A 

common assumption is that we draw cognitive resources from 

a limited pool. By increasing the complexity of the task, 

subjects run out of resources and so fail to fully evaluate the 

information required to make decisions [9]. Thus we propose 

to rebase the measurement of speech signal quality in terms of 

the cognitive effort required to conduct a speech 

communication task. 

3. Performance-based Measures of Quality 

The study of the effect of noise on human performance has a 

long history, and there are many psychoacoustic models that 

can be used to predict likely intelligibility performance from 

signal SNR. However few studies have investigated the impact 

of signal quality on cognitive load for signals of high 

intelligibility. Previous studies known to us are those of by 

Sarampalis et al [10], by Durin et al [11], and by Huckvale & 

Leak [12]. 

In the study by Sarampalis, subjects were asked to repeat 

and memorise words from sentences spoken in noise. 

Comparisons were made in task accuracy between noisy 

speech and noise-reduced (NR) speech processed by the 

MMSE algorithm [13]. Generally word intelligibility 

performance was reduced by NR processing, although recall 

performance was improved in one test condition. The dual-

task design seems to have made the listening test much harder 

for the subjects, so causing them to make errors even for good 

quality speech. Our interpretation of this result is that by 

adding a memory task to the intelligibility test, Sarampalis has 

effectively shifted the psychometric function to the right, so as 

to obtain changes in performance with changes in signal 

quality for signals of otherwise similar intelligibility. 

Durin's study investigated the effect of telephone codecs 

on performance in a letter recognition task and a digit memory 

task. In the letter task subjects hear a spoken description of a 

letter and have to respond quickly whether the description 

matches a displayed letter. In the digit memory task, five 

spoken digits are played to the subject who must subsequently 

indicate whether a displayed digit was one of the set. 

Interestingly, results show changes in both recognition 

accuracy and in reaction time with changes in codec bit rate. 

While changes in accuracy could be attributed to a shift in the 

intelligibility function caused by the dual-task, the shift in 

reaction times adds a different dimension to the experiment - 

tapping into effects of the signal on the cognitive processing 

required by the task. Durin et al suggest poorer quality signals 

make greater demands on cognitive resources which makes the 

words harder to remember, so causing increases in decision 

times and a reduction in accuracy. 

In the study by Huckvale & Leak, reaction times to the 

identification of spoken digits were measured directly under 5 

different signal conditions. The conditions involved the 

addition of car noise or babble to clean speech, and the 

subsequent processing by an MMSE noise-reduction 

algorithm [13]. Results showed that changes in signal quality 

made significant changes to the reaction times of listeners to 

the spoken digits. Importantly, however, these changes in 

reaction time occurred even though the accuracy of the 

listeners in the task of identifying digits did not change across 

conditions. 



From these studies we can now contrast two explanations 

of a speech communication error: a signal is of poor 

intelligibility if errors are made even if the signal is given the 

listener's full attention and unlimited time to respond, while a 

signal is of poor quality if errors are made because signal does 

not allow the listener to give it their full attention or enough 

processing time. From this distinction between intelligibility 

and quality we can begin to identify the requirements for an 

evaluation methodology that would provide us with a means of 

assessing the effect of signal quality on speech 

communication. A method should: 

(i) be based on objective measurements, that is, 

measurements of human performance not human 

opinion, 

(ii) exploit increases in cognitive load caused by a 

complex task to shift the psychometric function of 

intelligibility so that subjects make errors even for 

otherwise highly intelligible signals, 

(iii) include measures of reaction time or other 

physiologically-based signals to add a dimension of 

measurement directly related to cognitive load. 

There is another requirement, however, not met by the 

previously mentioned studies: 

(iv) be based on a speech task relevant to the situation in 

which the communication systems is used. 

The previous studies used only isolated words rather than 

realistic speech materials, a fact that makes it harder to justify 

the value of the experimental results to the users of a speech 

communication system. 

Lastly, the quantitative analyses in these studies are just on 

the edge of statistical significance. Thus overall, the goals of 

our work are to extend current research in two-ways: to 

improve the relevance and the reliability of performance-based 

measures of speech signal quality.  

4. Audio Proof-Reading 

The experimental task we have designed is based on audio 

proof-reading. This task was chosen because of its clear 

similarity with a number of everyday speech activities, such as 

dictation, interview transcription, or general business 

transactions over the telephone. Transcripts of a spontaneous 

conversation are corrupted with typical word insertion, word 

deletion and word substitution errors. In the listening task, 

subjects listen to the conversation in real-time and must 

identify the location of transcript errors from a displayed 

transcript. Subjects are encouraged to find as many errors as 

possible, with the expectation that increased listening effort 

would decrease the number of errors detected and increase the 

number of false alarms. As well as primary accuracy on the 

task, the idea is also to measure the average processing delay 

between the listener hearing the relevant word and marking the 

transcript. It would be expected that increased listening effort 

would lead to increased response times. 

The design of the task allows us to control complexity 

through the number and type of errors introduced into the 

transcript. Measurements of accuracy and response speed 

provide two means to assess cognitive load. The use of 

spontaneous speech gives the method ecological validity. We 

now describe the particular implementation used in our 

experiment. 

5. Methodology 

Recordings of two speakers discussing the differences between 

two pictures were used as a source of natural spontaneous 

speech. Four minute extracts from six different spontaneous 

conversations were used. These were downsampled to 16000 

samples/sec, and amplitude equalised using a moving window 

of size 10 seconds. The two speaker signals were then added 

to create a monophonic signal which was presented binaurally. 

Two noise conditions were created from the original speech by 

adding babble noise at +6dB SNR, or car cabin noise at -3dB 

SNR. The noise levels were chosen on the basis of other 

studies we have performed on the effect of these two noise 

types on word intelligibility. The levels chosen give SII 

performance indices greater than 0.9 and informal listening 

tests showed that the materials were still highly intelligible. 

The noise conditions were then processed with an MMSE 

noise reduction algorithm [13] as implemented in 

VOICEBOX [14] to create two further noise-reduced 

conditions. Lastly, a telephone signal quality condition was 

produced by band-passed filtering the original audio between 

300 and 3200Hz, downsampling to 8000 samples/sec, 

applying a mu-law encoding and decoding, then upsampling 

back to 16000 samples/sec; this simulates the G711 telephone 

codec. Thus there were six audio conditions: Quiet, 

Telephone, Babble Noise, Babble Noise+NR, Car Noise, Car 

Noise+NR. 

Transcripts of the spoken dialogue extracts were randomly 

corrupted with 50 errors: 30 word substitutions, 10 word 

insertions and 10 word deletions. To disguise the corruptions, 

so that they could not be guessed from the transcript alone, 

word edits were chosen from equivalent contexts found in 

other transcripts of different speakers describing the same 

pictures.  See Table 1 for examples. 

 

Error type Original  Error 

Substitution just says push 

got brown hair 

just says peaches 

� 
� 
� 

 

just saying push 

got blonde hair 

just have peaches 

Insertion in <S2:> 

yeah and 

I think 

� 
� 
� 

 

in it <S2:> 

yeah peaches and 

I don't think 

Deletion and there's a 

the top right 

then just below 

� 
� 
� 

 

and a 

the right 

then below 

Table 1: Examples of errors introduced into the 

transcripts. (<S2:> = change of speaker) 

To run the experiment, a program called the Proofometer 

was created to replay the audio, display the transcripts and 

collect the listener's responses, see Figure 1. Using the 

Proofometer program, the listener's task was to listen to the 

replayed conversation and click on substituted or inserted 

words, or click on spaces where words had been deleted. The 

audio, once started, could not be paused.  

Twenty-five subjects attempted the task, although results 

from seven had to be discarded because of the low number of 

errors detected or because of a high number of false-alarms 

across all conditions. Of the remaining 18 subjects, each 

listener corrected a different transcript in each audio condition, 

with the transcripts, audio condition and processing order 

balanced across listeners. All listeners were British English 

speakers with no known hearing impairments. The experiment 

was conducted over headphones in everyday listening 

environments. Subjects chose their preferred presentation level 



within a practice session which was then kept constant for all 

conditions. 

 

 

Figure 1: Proofometer interface. Users click on words 

or spaces to indicate errors. 

6. Experimental Results 

6.1. Transcript error detection 

There are a number of ways to record listener performance on 

the transcript error detection task. Figure 2 shows the raw % 

correct errors detected for all listeners across all conditions.  
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Figure 2: % error detection rate across audio 

conditions (N=18). 

From the raw results it can be seen that there is great 

variability within a condition, and much overlap across 

conditions. The difficulty of the task seems to have been set 

about right, since subjects were not obtaining 100% correct 

scores even in the best conditions. 

Figure 3 shows the % accuracy across conditions, 

calculated from the formula 

 

100 × (# errors found – # false alarms)  / 50 

There were 50 transcript errors to be detected. Figure 4 shows 

the d-prime value across conditions, calculated from the 

formula: 

 

InvNorm(#errors found/50)-InvNorm(#false alarms/50) 

 

Where InvNorm means the inverse normal distribution. The 

false-alarm rate is calculated out of 50, since listeners knew 

that 50 errors needed to be detected, so would not be expected 

to make more than 50 button clicks in one trial. In fact figures 

3 and 4 are very similar. 
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Figure 3. % accuracy across audio conditions (N=18). 
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Figure 4. d-prime across audio conditions (N=18). 

The difference between Figure 2 and Figures 3 & 4 is the 

inclusion of the false alarms. Because more false alarms 

occurred in the noisy and noise-reduced conditions, the effect 

of condition is now emphasized. However the graphs still 

show high variability within conditions, because of the wide 

variation in average performance on the task across listeners. 

The picture is clearer if we look in the change in performance 

within subjects across conditions. The change in % accuracy 

across conditions compared to each subject mean is shown in 

Figure 5. The figure shows how the addition of noise and the 

addition of noise-reduction both seem to degrade performance. 

An analysis of variance of % accuracy as a function of both 

condition (6 levels) and subject (18 levels), shows a 

significant effect of condition (F(5,85)=4.6, p< 0.001) and of 

subject (F(17,85)=5.4, p< 0.001). A Tukey post-hoc analysis 

shows significant differences between the noise-reduced 



conditions and each of the quiet and telephone conditions. 

Similar results were obtained from the d-prime measure. 

The results show no measurable effect of the telephone 

quality processing compared to the full-bandwidth condition. 
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Figure 5. Relative % accuracy change per speaker 

across audio conditions (N=18). 

6.2. Response Delay 

Having established that changes in signal processing affected 

listener performance on finding transcript errors, we now turn 

to how quickly they responded. Reaction times were measured 

by estimating the time of each word in each recording and, for 

each correctly identified error, measuring the delay between 

the time at which the word was played and the time at which 

the mouse was clicked. The mean delay was then calculated 

for each subject and for each condition. The changes in 

response delay within each subject across audio conditions are 

shown in Figure 6. 
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Figure 6: Change in response lag across audio 

conditions (N=18). 

A weakness of our current method is that measurements of 

reaction time lack precision, with considerable random error in 

recording the replay time and the response time. This may be a 

contributing factor to the variability observed in Figure 6. 

Although the noisy and noise-reduced conditions seem to have 

larger response delays, no significant effects are observed. The 

situation can be clarified somewhat by pooling the conditions 

into the categories Quiet (Quiet+Telephone), Noisy 

(Babble+Car) and Noise-reduced (BabbleNR+CarNR), see 

Figure 7. 
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Figure 7: Change in response lag in unprocessed and 

processed audio conditions. 

Analysis of variance of response delay across combined 

conditions (3 levels) and subjects (18 levels) shows a 

significant effect of condition (F[2,88]=3.4, p=0.037). A 

Tukey post-hoc analysis shows that the noise-reduced 

conditions together have a significantly longer delay than the 

quiet conditions, but are not significantly different to the 

unprocessed noise conditions. 

7. Discussion 

7.1. Implications for measures of speech quality 

In this experiment we investigated whether the accuracy or the 

speed with which errors were identified in an audio transcript 

were affected by signal quality for 6 different audio conditions 

all of good speech intelligibility. We have been able to show 

that signal quality did affect listener performance on both the 

primary task of finding errors and on secondary effects of 

response delay. We interpret these results as meaning that 

changes in signal quality lead to measurable changes in  

cognitive effort required to process speech. 

This work has replicated some of the results of the study 

by Sarampalis et al [10], in that we have shown how a 

complex communication task can cause changes in error-rate 

with signal quality even with materials of good intelligibility. 

However, in our experiment, the noise-reduction process made 

matters worse rather than better. Our results are more similar 

to those of Durin et al [11], in that we also observed increased 

reaction times as signal quality was degraded, although we did 

not observe a difference due to telephone quality processing. 

However, our task was based on normal, spontaneous dialogue 

materials rather than on digits. 

Overall, although significant effects of signal processing 

condition were observed, there was also a great deal of 

variation across subjects and conditions which reduced the 

sensitivity of the testing. Thus to pursue this type of testing 

further we need to increase the power of the experimental 

design. We can do this in a number of ways: by reducing 

variability within the test materials (e.g. by making all the 

transcripts in the Proofometer test equally hard), by improving 

the training given to listeners (to reduce a small learning 

effect), by motivating subjects better (to reduce effects of 



attention loss), or in the worse case, running larger numbers of 

subjects. The precision of our measurements of reaction time 

needs to be improved 

7.2. Implications for noise reduction 

Previous studies of the effects of noise reduction have 

produced the contradictory result that while noise reduction 

generally decreases intelligibility [5], listeners seem to prefer 

noise-reduced speech when asked their opinion about the 

quality of the signal [15]. Our original hope for this 

experiment was that noise-reduction might have a beneficial 

effect on cognitive load even if it had little impact on 

intelligibility. This is what Sarampalis et al [10] found in at 

least one experimental condition. In fact, we found no 

evidence that the particular noise-reduction technique we 

applied had any benefit over listening to the noisy speech 

directly. 

The fact that our results match previous intelligibility test 

results rather than previous MOS test results perhaps confirms 

the unreliability of MOS testing. Just because listeners prefer a 

signal quality does not mean that it leads to better speech 

communication. 

Why doesn't noise reduction lead to a reduction in  

cognitive load? It may be that the noise reduction processing 

leaves behind a distorted speech signal that in itself is as hard 

to process as the noisy signal. The average number of false 

alarms in the noisy and noise-reduced conditions were 

significantly higher than in the quiet conditions (independent 

samples t-test, t(102)=3.7, p < 0.001). This is perhaps an 

indication that degraded signals affect listening effort by 

creating attentional distractions. 

If noise reduction is going to be useful in a speech 

communication application, we need to show that it has some 

benefits over listening to the noisy signal directly, either in 

terms of intelligibility or listening effort. We need objective 

measures of signal quality like those presented in this paper to 

demonstrate and assess the benefits of noise reduction. 
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