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ABSTRACT

We propose an algorithm for blind estimation of the magni-
tude response of a channel using the observations of a single
microphone. The algorithm employs channel robust RASTA
filtered Mel-frequency cepstral coefficients as features and a
Gaussian mixture model based classifier to generate a dictio-
nary of average speech spectra. These are then used to infer
the channel response from speech that has undergone spectral
modification in the capturing process. Simulation results us-
ing babble noise, car noise and white Gaussian noise are pre-
sented, which demonstrate that the proposed method is able
to estimate a variety of channel responses to within 3−4 dB
in terms of weighted spectral distance; and it is more accurate
than a previously published method.

1. INTRODUCTION

When a speech signal is captured by a microphone positioned
at some distance away from the talker, the spectrum of the
observed speech will be modified by the transmission chan-
nel between talker and microphone. The channel combines
the effect of the acoustic environment, the positioning of the
the microphone and the characteristics of the sound capturing
equipment. In addition, there may be further degradations
by the sound capturing equipment and ambient background
noise. The overall process can be expressed as

x(n) = s(n)∗ h(n)+ ν(n), (1)

where s(n) is the desired speech signal, h(n) are the total
channel effects, ν(n) is additive observation noise and ∗ de-
notes convolution. Our objective is to identify the magnitude
spectrum of the channel h(n) using only the microphone ob-
servation x(n).

Channel effects and noise can have detrimental effects
on captured speech [1]. These most often reduce the per-
ceptual experience of a listener and may, when the channel
and the noise are predominant, result in loss of intelligibility.
Furthermore, channels and noise can deteriorate the perfor-
mance of speech recognition, speaker identification applica-
tions. Knowledge of the channel response can be used to
enhance observed speech but could be used to obtain infor-
mation about the recording equipment and the acoustic envi-
ronment.

Much previous work in blind channel estimation has con-
sidered the case of multiple microphones [1]. The single-
microphone case is inherently more difficult as no spatial in-
formation is available compared with the multi-microphone
case. Previous work on single channel identification has con-
sidered using a Bayesian framework for parametric single
channel estimation [2] and the use of the Long-Term Average
Speech Spectrum (LTASS) [3, 4, 5].

The method proposed in this paper can be seen as a gener-
alization of the LTASS method in [3]. Whereas [3] modelled
speech using a single long-term average spectrum, our ap-
proach divides this into multiple classes of average speech
spectra. The log-spectral magnitude of the channel is in-
ferred by subtracting the spectrum in a frame of observed
speech from the closest matching template of clean speech
average spectrum. The advantage of this approach is that
a more accurate estimate of the channel can be obtained at
each estimation instant and so, less data is required for the
estimation. Furthermore, there will be less variation in the
estimation accuracy between speakers and utterances.

The remainder of this paper is organized as follows.
The channel estimation algorithm is described in Section 2.
Experimental results demonstrating the Gaussian Mixture
Model (GMM) based algorithm are given in Section 3 and
conclusions are drawn in Section 4.

2. THE BLIND CHANNEL ESTIMATION
ALGORITHM

The algorithm consists of two stages:

1. training of the GMM to derive K classes of average
speech spectra and

2. inference of an unknown channel.

First, the general principle behind the algorithm is introduced
and then each of the two stages is described in detail.

2.1 Preliminaries

It is customary to process speech in the frequency domain
using short overlapping frames and, accordingly, from (1)
we can write

Xl(k) = Sl(k)Hl(k)+Vl(k), (2)

where Al(k) denotes the Short-Time Fourier Transforms
(STFTs) of the lth frame of a(n) and k is the frequency bin
index. Furthermore, under the assumption that the signal
and the noise magnitudes and phases are independent, and
that the channel is stationary or varies much slower than the
speech, we can write

E{|Xl(k)|
2} = E{|Sl(k)|

2}|H(k)|2 + E{|Vl(k)|
2}, (3)

where E{·} denotes expectation. In the noise-free case,
Vl(k) = 0,∀l, and if we have some prior knowledge of the
spectrum of the speech signal, |Sl(k)|, we can obtain an esti-
mate of the magnitude spectrum of the channel channel with

|Ĥl(k)| = exp
(

ZX ,l(k)− ẐS,l(k)
)

, (4)
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Figure 1: System diagram of the proposed algorithm.

where ZA,l = log(|Al(k)|), Âl(k) denotes an estimate of Al(k),
and we have considered the instantaneous estimates of the
expectations in (3).

The problem is then how to find ẐS,l(k). A solution that
has been considered is to use the LTASS [3, 4]. This has
shown to give approximate channel estimations but requires
long and phonetically balanced observed utterances for the
LTASS approximation to become valid. Instead, we pro-
pose using a classifier in order to find a finer grid of average
speech spectra that are closely related to the different sounds
in speech. In this case, more precise estimates are obtained
for each frame of speech, resulting in more rapid and more
accurate channel estimates.

2.2 Classes of average speech spectra

The first stage in the algorithm is to derive the K classes of
average spectra following the procedure shown in the upper
half of Fig 1. In order to do this, we need a suitable set of
features to represent a frame of the speech spectrum and a
classification algorithm.

Ideally, the features should not be affected by the chan-
nel; the reason for this will be clarified further in Section 2.3.
A suitable candidate are the RASTA filtered Mel-Frequency
Cepstral Coefficients (MFCC-RASTA), which were devel-
oped as robust features for speech recognition. RASTA pro-
cessing performs bandpass filtering in the cepstral domain in
order to reduce channel effects [6]. Thus, for the lth frame
of clean speech we obtain a feature vector cS,l of Nc MFCC-
RASTA coefficients.

We use the feature vectors, cS,l , to train a K-mixture
GMM [7] to obtain the means, µ i, diagonal covariances, Σi,
and weights, πi, of each mixture. An important component
that we will use are the relative mixture probabilities – the
probability that feature vector cS,l belongs to the ith mixture–
defined as [7]

p(zi = 1 | cS,l) =
πlN (cS,l | µ i,Σi)

∑K
j=1 πlN (cS,l | µ j,Σ j)

, (5)

where zi ∈ {0,1}.
Subsequently, we form a K ×LS matrix, PS, comprising

the K mixture probabilities for the LS available speech frames
and an LS ×NFT matrix, ZS, with the short-term log-spectra
of the speech for each frame, where NFT defines the number
of points in the short-term Fourier transform. In order to
avoid issues with signal level differences that may arise in
the identification process, the log-spectra are all normalized
by subtracting their mean according to

Z̄S,l(k) = ZS,l −
1

NFT

NFT−1

∑
k=0

ZS,l(k), ∀l. (6)

This process is not to be confused with cepstral mean sub-
traction which aims to neutralize the channel; this normal-
ization only affects the log-spectral magnitude.

Finally, we combine PS and Z̄S to perform a weighted
average of the short-term log spectra and to obtain a set of K
average speech spectra

ẐS = PSZ̄S, (7)

where ẐS is a K ×NFT matrix whose ith row represents the
average log-spectrum corresponding to the ith mixture.

2.3 Channel estimation

The channel estimation stage is shown in the lower half of
Fig. 1. We now make use of the GMM parameters, together

with ẐS from (7) to estimate the unknown channel. In a simi-
lar fashion to the procedure of Section 2.2, we begin by form-
ing a set of feature vectors, cX ,l , from the observed speech
signals, x(n). Note, that this is different from Section 2.2
where the features were extracted from clean speech. Next,
the features and the GMM parameters are used with (5) to
find the relative probabilities for each feature vector from
the observed speech and a relative probability matrix, PX , is
formed. We create an LX ×NFT matrix Z̄X with normalized
short-term log-spectra of the observed speech for each frame.
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Figure 2: Ten different channels comprising one conjugate
pair of poles and one conjugate pair of zeros. Channel esti-
mates for (a) LTASS based estimation and (b) GMM based
estimation using 80 utterances. The line in the box is the
median, the box edges are the 25th and the 75th percentiles
and the whiskers correspond to approximately±2.7 standard
deviations.

The magnitude spectrum of the channel can be estimated up
to an unknown scale factor using

|ĥ| = exp

(

[

Z̄X −P
T
X ẐS

]T
1

LX

)

, (8)

where |ĥ| = [|Ĥ(0)| |Ĥ(1)| . . . |Ĥ(NFT )|], superscript T de-
notes matrix transpose and 1 is a Lx ×1 vector of with all el-
ements equal to one. Here, PX acts as a selection matrix and
generates a weighted average spectrum based on the class
probabilities and the average spectrum templates of clean
speech.

3. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results to
demonstrate some of the abilities of the channel estimation
algorithm. The performance is also compared to the LTASS
based algorithm from [3].

The weighted root mean squared log-spectral distance
described in [3] is used as a quantitative measure to evalu-
ate the estimated channels. The metric compares two power
spectra P1(k) and P2(k) according to

WSD =

[

∑N−1
k=0 W (k)|e(k)|2

∑N−1
k=0 W (k)

]
1
2

dB, (9)

where

e(k) = 10log10

(

P1(k)

P2(k)

)

, (10)

and W (k) is a frequency dependent weight function, which
combines A-weighting and LTASS. Thus, the weighting uti-
lizes properties of speech signals and of human hearing.
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Figure 3: Estimation of a single pole-pair channel in noise
using (a) LTASS based method. and (b) GMM based method.
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Figure 4: Estimation of a single zero-pair channel in noise
using (a) LTASS based method. and (b) GMM based method.

For all experiments, data is drawn from the TIMIT
database. The TIMIT training set constitutes anechoic,
noise-free recordings from 422 male and 184 female talkers,
with ten sentences from each talker; the duration of each sen-
tence is approximately three seconds and the sampling fre-
quency is fs = 16 kHz. Following the procedure described in
Section 2.2, we used the full training set of TIMIT to train the
GMM and to define the classes of average log-spectra. The
same set was also used to calculate the LTASS as in [3]. We
used 32 ms frames overlapping by 50% and multiplied by a
Hanning window. From each frame we calculated Nc = 12
MFCC-RASTA coefficients and used these to train a GMM
of K = 1024 mixtures.

The core TIMIT test set was used for the channel esti-
mation examples; it consists of 240 sentences (including the
dialect sentences), ten sentences each from 16 male and 8 fe-
male talkers. In this way, we use different data from that used



for training the GMM and for estimation of the LTASS. The
sentences were concatenated using three sentences to create
one utterance, which results in a total of 80 utterances of male
and female talkers.

In the first experiment, we used ten randomly generated
channels comprising one conjugate pole pair and one conju-
gate zero pair without additive noise. The results are shown
in the box plot in Fig. 2 (a) for the LTASS based approach
and (b) for the GMM based method. It can be seen from this
plot that the variation in estimation accuracy for the differ-
ent utterances is greatly reduced by the GMM method and
also the overall accuracy is improved by about 2 dB. This
is to be expected since the GMM based approach defines a
a much finer grid of average speech spectra. There is little
dependence on the channel for both algorithms.

Next, we generated two fixed channels, one with a con-
jugate pair of poles and one with a conjugate pair of ze-
ros. We then added noise to the filtered signals, varying the
SNR between 0 and 60 dB. Three different types of noise
were considered: babble noise, car noise and White Gaus-
sian Noise (WGN). Figure 3 shows the channel identification
results in terms of weighted spectral distance for the single-
pole channel and Fig. 4 shows the results obtained from the
single-zero channel. It can be seen from these results that the
GMM based method is more robust to noise compared to the
LTASS based method, for SNR > 10 dB. The most notable
improvement covering the full range of SNRs is for WGN.
WGN flattens the average spectrum of the observed speech
and violates the LTASS assumption – the channel estimate
will tend to an inverted LTASS as SNR →−∞ . On the other
hand the GMM based method is able to select more appro-
priate spectra for this and, thus, reduces the error. However,
a more thorough study of the classification errors caused by
the noise and the effects this has on the channel estimation
errors are required and are left as future work.

Finally, we show an illustrative example with a real mea-
sured channel. The objective is to demonstrate the perfor-
mance of the algorithm with realistic data and to relate the
numbers of the weighted spectral distance to a typical esti-
mation example. The measured microphone response was
convolved with the clean speech samples. The true and the
estimated channels are shown in Fig. 5. The weighted spec-
tral distance in this example is 5.5 dB for the estimation us-
ing the LTASS based approach and 3.1 dB for the estimation
with the GMM based algorithm. We see that the important
large scale components (the position of the three poles in this
case) have been identified correctly.

4. CONCLUSIONS

We have developed an algorithm for blind identification
of the magnitude spectrum of a stationary or slowly time-
varying channel. The key principle of the algorithm is the
classification of average log-spectra of clean speech with a
Gaussian Mixture Model (GMM) and MFCC-RASTA fea-
tures. The GMM is then used with frames of speech that
has undergone a channel to find the best matching template
of clean speech from which the former is subtracted. In this
way, the remainder after the subtraction is the unknown chan-
nel.

The operational properties of the algorithm were demon-
strated using a variety of simulated channels and a mea-
sured channel comprising a microphone response. Based
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Figure 5: Estimates of a measured microphone response in
the noise-free case. The WSD is 5.5 dB with LTASS based
estimation and 2.9 dB with GMM based estimation.

on the current results, the proposed GMM based approach
showed lower estimation variance from different utterances
compared to an earlier LTASS based algorithm. The simula-
tions also considered the performance in various types of ad-
ditive noise, where the results indicated that the performance
is much dependent on the spectral properties of the noise and
also of the channel. However, the GMM based approach
was generally more robust to noise compared to the LTASS
method and significantly so in the case of white Gaussian
noise. Overall, the estimation accuracy of the method in
the noise-free case is in the range of 3− 4 dB in terms of
a weighted log-spectral distance.
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