
CLEAR Project

Speech Cleaning Literature Review

Mike Brookes, Nick Gaubitch, Mark Huckvale, Patrick Naylor

15/05/2008

PUBLIC RELEASE



PUBLIC RELEASE Section 0.0

Executive Summary

The aim of speech cleaning is to improve the intelligibility and/or the listenability of poor quality
speech signals. The causes of poor quality may include additive acoustic background noise, convolutive
channel e�ects and distortions introduced in the electronic recording chain such as clipping, electrical
noise and codec distortions. This report provides a summary of the literature on three aspects of
speeh cleaning. First it discusses the development and current state of methods used to evaluate
the quality and intelligibility of speech. Second, it reviews the principal approaches that have been
proposed for cleaning or enhancing speech signals and, third, it reviews methods for estimating the
characteristics of the background noise. The report also includes a brief overview of commercial
speech cleaning systems and of sound databases that may be useful in evaluating and developing
speech cleaning systems.
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List of Abbreviations

AI Articulation index

ALCons Articulation Loss of Consonants

AMDF Average Magnitude Di�erence Function. A function with similar properties to the cross- or
auto-correlation but that requires no multiplications to evaluate.

AR Autoregressive

CASA Computational Auditory Scene Analysis

CCI Call Clarity Index

CCR Comparison Category Rating

CODEC Coder-Decoder

CVC Consonant-Vowel-Consonant

DAM Diagnostic Acceptabiliity Measure

DCR Degredation Category Rating

DFT Discrete Fourier Transform

DRT Diagnostic Rhyme Test

EM Estimation-Maximization. An iterative technique to solve certain optimization problems.

ETSI European Telecommunications Standards Institute

function

GMM Gaussian Mixture Model. An approximation to an arbitrary probability density function that
consists of the weighted sum of several Gaussian distributions.

GSM Global System For Mobile Communications

HINT Hearing-in-Noise Test

HMM Hidden Markov Model

IRS Inverse repeated Sequence. A pseudo random sequence used for impulse response measurement.

ITU International Telecommunication Union

KLT Karhunen Lòeve Transform

LF The Liljencrants-Fant model of the gloattal �ow waveform.

LLR Log-Likelihodd Ratio

LMS Least Mean Square adaptive �lter

LPC Linear Predictive Coding. An autoregressive model of speech production.

LSP Line Spectrum Pairs

MARS Multivariate Adaptive Regression Splines

Mel-scale A non-uniform frequency scale that corresponds to preceived frequency. It is approximately
linear at low frequencies and logarithmic at high frequencies.

MFCC Mel-frequency Cepstral Coe�cients. A transformation of a signal spectrum that is obtained by
taking the DCT of the log of the spectrum expressed on the mel scale.

ML Maximum Likelihood
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1 Introduction

The terms �speech enhancement� and �speech cleaning� propely refer respectively to the improvement
of the quality or intelligibility of speech and the reversal of degradations that have corrupted it; in
practice however, most authors use the two terms interchanably. This report is concerned with cleaning
methods that use only a single microphone signal; other, often more e�ective, techniques are possible if
multiple microphone signals are available. The principal degredations that we are concerned with are (a)
additive acoustic noise, (b) acoustic reverberation, (c) convolutive channel e�ects resulting in an uneven
or bandlimited response, (d) non-linear distortion such as arises from clipping, (e) additive broadband
electronic noise (f) electrical interference (g) codec distortion, (h) distortion introduced by recording
apparatus.

The aims of speech cleaning vary according to the application and may include:

1. Improvements in the intelligibility of speech to human listeners.

2. Improvement in the quality of speech that make it more acceptable to human listeners.

3. Modi�cations to the speech that lead to improved performance of automatic speech or speaker
recognition systems.

4. Modi�cations to the speech so that it may be encoded more e�ectively for storage or transmission.

Although we are, in this project, primarly concerned with the �rst two of these aims, most of the
literature on the subject has concentrated on the last three. The distinction is important because it
has been found that some approaches that are e�ective in improving the apparent quality may actually
damage intelligibility. Despite its apparent similarity to that of improving intelligibility, improving the
performance of speech recognition systems is signi�cantly di�erent because such systems ignore many of
the cues used by humans and, in particular, normally use a coarse spectral representation of the signal
from which most voicing information has been removed.

This report is a literature review covering three main areas: evaluation methods, speech enhancement
and noise estimation. Section 2 reviews methods that have been developed for evaluating speech intelligi-
bility and speech quality. For both of these tasks, it discusses both �subjective� methods that require the
judgement of human listeners and �objective� methods that attempt to predict these judgements using
signal analysis. Section 3 gives an overview of techniques that have been developed for single-microphone
speech enhancement. An important step in several methods of speech enhancement is the estimation of
the noise characteristics and, in particular, its mean power spectrum. Section 4 discusses the ways that
have been used to etimate the noise characteristics from the noisy speech signal. Finally, sections ?? and
5 give a brief overview of some of the Commercial Speech Enhancement Systems and Databases that are
available.

2 Evaluation Methods for Speech Enhancement Systems

2.1 Objectives

The evaluation of communication channels for speech has a long history, going back at least as far as
Fletcher & Steinberg's work on articulation testing [Fletcher and Steinberg, 1929]. The aim of this section,
which draws on the excellent review in Chapters 10 and 11 of Loizou [2007], is to look at what elements
of that history have applicability today for the evaluation of speech enhancement systems.

Methods for evaluation can be divided into those that look at the e�ect of the processing system on
Speech Intelligibility, and those that look at its e�ect on the acceptability of the speech signal, known
as Speech Quality. Methods can also be described under the heading of Subjective when they require
the judgements of human listeners, against Objective when those judgements are predicted from some
analysis of the signal. Subjective methods can be divided further into Absolute scoring methods � where
a single stimulus is rated, against Preference methods � where multiple signals are compared. Objective
methods can further be sub-divided into Intrusive methods � which require access to both original and
processed signals, and Non-intrusive methods � which only require access to the processed form.

2.2 Evaluation of Speech Intelligibility

When assessing the intelligibility of a speech signal, we need to choose an appropriate linguistic level at
which to make measurements. Do we want to measure the accuracy with which each phonetic element
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is communicated? Or whether each word is identi�able? Or whether the meaning of a sentence can be
understood? The problem is one of increasing redundancy: not all phonetic sequences make up words in
the language, not all word sequences make up meaningful sentences. You don't need to correctly identify
all segments to identify a word, and you don't need to identify all words to understand a sentence. This
linguistic redundancy introduces another problem in that individual human listeners will vary in their
ability to make use of these linguistic constraints. While we may want to assess the utility of a channel
to convey the meanings of real spoken utterances, listeners will vary widely in their ability to understand
the speech depending on their own linguistic competence.

Thus most speech intelligibility tests are either of phonetic units made up into nonsense syllables, or
of words in isolation or in short sentences.

2.2.1 Subjective Methods

2.2.1.1 Phonetic tests The original articulation test material in Fletcher and Steinberg [1929] con-
sisted of a list of 66 CVC nonsense syllables . Since the list was balanced for each consonant and vowel
phoneme, the number of syllables heard correctly gave an indication of phoneme intelligibility.

Miller and Nicely [1955] used a similar approach, but reduced the consonants to a size 16 subset:
/p, t, k, b, d, g, f, T, s, S, v, D, z, Z, m, n/ in a VCV frame. This subset was designed so that intelligibility
could be broken down into �ve articulatory dimensions: voicing, nasality, frication, sibilance and place.
Since then VCV materials have been widely used within speech perception research, because intelligibility
results can be analysed in terms of the e�ectiveness of the primitive acoustic patterns necessary for
consonant discrimination. However, for overall assessment of intelligibility, most e�ort has gone into
word-level tests.

2.2.1.2 Word intelligibility One problem with the use of nonsense syllables is that listeners require
training to be able to identify component phonetic units, and may be confused by phonemes which don't
readily accord with spelling. Limiting listener responses to real words allows them to respond in ordinary
spelling, but introduces other di�culties: �rstly that di�erent listeners may have di�erent degrees of
familiarity with the words being used and their potentially confusing competitors; secondly that words
are memorable, and that, having heard a word once, listeners may be biased in their usage of the word
another time. One solution to these problems include creating multiple lists of balanced di�culty, so
that a listener can be used more than once. Another is to create tests with closed response sets, so every
listener needs to make the same choices about the word under test.

One of the earliest word lists created for intelligibility testing was that of Egan [1948], who constructed
20 lists of 50 monosyllabic words. His aim was to balance average di�culty and range of di�culty over
the lists, while ensuring that the phonetic units present were equally represented. Egan introduced the
idea of �phonetic balance� by which he meant that the relative frequency of phonemes in the word lists
matched the relative frequency of phonemes in conversational speech. Lehiste and Peterson [1959] built a
similar set of lists of monosyllabic words, but which were balanced for the relative frequency of phonemes
in monosyllabic words. Tillman et al. [1966] built on this idea to construct the Northwestern University
Auditory test 4 which was used for audiometry. Similar word lists were constructed in British English by
Fry and Kerridge [1939], Dickson and Chadwick [1950] and Fry [1961].

Fairbanks [1958] modi�ed Egan's idea so that instead of identifying the whole word, listeners merely
had to identify the leading consonant (the rest of the word was written down on the response sheet),
leading to the concept of a �rhyme� test. House et al. [1965] modi�ed Fairbanks' idea by introducing
a closed response set, where listeners only had to choose amongst six alternatives: this was called the
Modi�ed Rhyme Test (MRT). Kreul et al. [1968] attempted to modify the MRT to make it a clinically-
useful tool, while a phonetically-balanced version of the MRT was developed by Clarke [1965]. The MRT
procedure has also been used for intelligibility testing in British English [Haggard and Mattingly, 1968].

In the Diagnostic Rhyme Test (DRT), Voiers [1983] extended the MRT by requiring that listeners
choose between a pair of words di�ering in only one phonetic feature. Voiers chose features that had
appeared in the analysis by Miller and Nicely [1955] of consonant confusions. This allowed listener
judgements to be analysed in terms of their performance on the di�erent feature dimensions as well as on
their overall score. Extensive testing of the DRT has shown that it has high reliability, with repeatability
being within 1% for a group of 10 listeners [Voiers, 1983].

2.2.1.3 Sentence intelligibility Words in isolation are not typical of the way in which speech is
used for communication. In everyday listening to speech, knowledge of the topic, semantic, grammatical
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and prosodic constraints provide additional information which allow us to recognise words. However the
use of sentences in intelligibility testing only ampli�es the problems discussed earlier in relation to the use
of words: listeners will vary even more in their ability to extract higher level information from sentences
to aid recognition, and sentences are even more memorable. It is also much harder to create balanced
lists of sentences, since the amount of bene�t to be gained from sentence context is hard to quantify.

Kalikow et al. [1977] developed the Speech Perception in Noise (SPIN) test to try and assess the extent
to which listeners were able to extract contextual information from sentences to aid word recognition.
The SPIN test comprises 8 lists of 50 sentences, with one key-word per sentence. There are 25 key words
in each list, occurring once in a high predictable context (e.g. �The boat sailed across the bay�), and
once in a low predictable context (e.g. �John was talking about the bay�). The relative scores on the two
types of sentence provide a measure of the listener's ability to use context. A number of studies [Bilger
et al., 1984, Morgan et al., 1981] have suggested improvements in the design of the SPIN test.

The Hearing in Noise test (HINT) is a revised version of the SPIN test developed by Nilsson et al.
[1994]. The HINT test comprises 25 balanced lists with 10 sentences per list. All words in the list are
scored, but alternatives are allowed for grammatical words (e.g. a, the, is, was, . . . ). A standard recording
of the lists by a professional male actor has been made available and the HINT test remains popular for
the assessment of hearing impairment.

Two testing methodologies are in common use for the measurement of intelligibility with speech
materials such as HINT. In the �rst method, the speech signals are �rst processed into a number of �xed
levels of presentation: where the level is either the speech amplitude or the signal to noise ratio. Then
speech materials from all levels are presented to the listeners in random order, and the intelligibility
at each level is recorded and plotted as a function of the presentation level. This graph usually takes
the shape of an S-shaped psychometric function as intelligibility changes from 0 to 100% across a range
of levels. From this graph we can estimate the presentation level which achieves a required level of
intelligibility. The level at which 50% intelligibility is obtained is called the Speech Reception Threshold
(SRT) [Plomp and Mimpen, 1979].

This �xed presentation method has a number of disadvantages: �rstly, the same amount of speech is
presented at every level - even though we may be only interested in one point on the psychometric curve
� this makes the test rather long; secondly, to ensure that the levels bracket 50% intelligibility say, we
may need to use a wide range of levels, many of which will have 0% or 100% intelligibility for a particular
listener; thirdly, we need to ensure that the speech material presented at each level is equally di�cult.

An alternative to this method is to use an adaptive procedure where presentation levels change
dynamically within the test to determine the level which delivers an intelligibility score of required size.
In a typical procedure, the speech material is �rst played at a good level/SNR such that listeners can
readily identify the words. Then the level is adjusted such that the presentation level/SNR falls by (say)
2dB when the listener gets the words correct, and rises by 2dB when the words are incorrect. Typically
the average of the levels at which the last eight reversals in direction were made is taken to be the overall
SRT score. Studies into the e�ectiveness of this procedure has shown that it seems to work well [Levitt,
1971, Dirks et al., 1982].

A disadvantage of an adaptive procedure is that it relies on assumptions about the shape of the
psychometric function. A curve that is not very steep at 50% intelligibility will produce more variable
results, and a curve that is not monotonic may not produce sensible results at all.

Where the systems under test are available as real-time implementations, it is possible to process
stimuli while a test is taking place; this avoids the need to capture and process the stimuli o�-line
[Worrall et al., 2006]. In combination with an adaptive procedure, this makes intelligibility testing fast
enough for rapid assessment of systems in the �eld.

2.2.2 Objective Methods

Objective measures of the intelligibility of a channel are usually based on the premise it is the addition
of reverberation and noise that has the most signi�cant impact on intelligibility. Through comparison of
the original and processed signals and working from the assumption that the original is 100% intelligible,
these methods attempt to estimate the loss in intelligibility caused by the addition of reverberation or
noise. Over the years several objective measures of intelligibility have been developed. Most are based
on measurements of how changes to the signal are distributed across a number of spectral bands. This
idea was �rst proposed in French and Steinberg [1947] and led to the de�nition of the Articulation Index
(AI) [Kryter, 1962, ANSI, 1969] and the Speech Intelligibility Index (SII) [ANSI, 1997]. In this approach
measurements of the speech and noise levels in di�erent spectral bands are weighted according to the
relative contribution of the band to intelligibility. Evaluation has shown that such measurements correlate

PUBLIC RELEASE Page 7



PUBLIC RELEASE Section 2.3

well with subjective intelligibility scores, at least for steady-state noise and normally-hearing listeners.
Recent extensions to the SII approach have attempted to account for the loss in intelligibility caused by
�uctuating noise [Ludvigsen, 1985, Rhebergen and Versfeld, 2005, Rhebergen et al., 2006].

The Speech Transmission Index (STI) is a formalisation of the SII developed by Steeneken and Hout-
gast [Steeneken and Houtgast, 1980, Houtgast and Steeneken, 1985, Steeneken and Houtgast, 1999].
Instead of using SNR to measure the audibility of speech in each spectral band, the STI uses a mo-
dulation transfer function (MTF) to assess the degree to which intensity modulation in each channel
is preserved. STI measurements are usually made by passing a special speech-like signal through the
channel under test. Reductions in the modulation depth of the test signal at the output of the analysis
channels indicates a loss in information. Evaluations have shown that the STI makes good predictions
for the intelligibility of speech disturbed by linear �ltering, reverberation or the addition of steady-state
noise [Houtgast and Steeneken, 1985]. However the measure is not suitable for non-linear processes, phase
jitter, compression, peak limiting or centre-clipping.

To model the e�ect of non-linear processes on intelligibility, Elhilali et al. [2003] developed a modi�ed
MTF called the spectro-temporal modulation index (STMI). As well as taking into account changes in
temporal modulations of intensity within a channel, like the MTF, the STMI also measures spectral
modulations across channels.

Other methods, not based on the articulation index approach, have also been used for intelligibility
testing. The %ALCons measurement is a widely used predictor of intelligibility in buildings that takes
into account the e�ect of reverberation and distance to source. The model of Holube and Kollmeier [1996]
predicts the intelligibility of CVC words through comparison with a database of word templates. Words
become less intelligible when the processing makes them more similar to competitors in the database.
Finally, intelligibility can be predicted from a database of real intelligibility measurements by comparing
actual channel conditions with conditions used during testing. For example, Fletcher and Galt [1950]
built a mathematical predictor from intelligibility data collected across many listening conditions.

Objective speech quality measures, such as PESQ, have also been used as predictors of intelligibility
and an evaluation of a number of measures can be found in Liu et al. [2006] . Yamada et al. [2006] built
a predictor for intelligibility from PESQ predictions of MOS for a number of noise conditions processed
by a number of noise-reduction algorithms. The e�ectiveness of prediction varied with word familiarity,
but correlations with subjective intelligibility scores as high as 0.9 were obtained.

Speech recognition systems have also been used to obtain objective predictions of speech intelligibility,
for example Chernick et al. [1999] contrasted the performance of a phone recogniser on the original and
degraded signals, to establish a prediction for the loss in intelligibility. Liu et al. [2006] compared a speech
recognition approach with other objective measures and found that it gave good intelligibility prediction
at +10dB SNR, but was signi�cantly worse than other measures at lower values, probably because human
recognition performance is substantially better than a recogniser at low SNR.

2.3 Evaluation of Speech Quality

The assessment of a communication channel for its e�ect on speech intelligibility is only one part of
the problem of system evaluation. Two channels which provide the same subjective intelligibility may
nevertheless di�er in other ways, and in particular may be more or less acceptable to listeners. This
assessment of acceptability of a channel, has become known as the evaluation of speech quality, although
the term is rather a confusing one, since often it is the degree to which background and system noise
interferes with the speech that is being assessed.

2.3.1 Subjective Methods

The assessment of speech quality is more di�cult than that of speech intelligibility, since the reliability
of listeners becomes an issue. There are broadly two types of speech quality test: one in which listeners
assign absolute ratings to individual speech stimuli, and one where listeners exhibit a preference for one
speech stimulus over one or more others. The advantage of the �rst type is that a system can be assigned
some absolute score, a disadvantage is that large numbers of listeners are required to achieve satisfactory
sensitivity. The advantage of the second type is that statistically signi�cant results can be obtained
from a comparison of two systems with relatively few listeners [Vazquez-Alvarez and Huckvale, 2002], a
disadvantage is that an estimate of the size of the di�erence between the systems may not be available.

2.3.1.1 Quality rating tests A widely used rating scale for the assessment of speech quality is
shown in Table 1. Standard procedures have been published about how the scale should be used within
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Rating Speech Quality Level of Distortion

5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying , but not objectionable
1 Bad Very annoying and objectionable

Table 1: Absolute Category Rating scale for Listening Quality (ACR LQ) [ITU, 1998a]

a testing procedure [Rothauser et al., 1969, ITU, 1990, 1998a]. In a training phase, listeners are played a
set of reference signals demonstrating the di�erent quality levels. This �anchoring� phase is important to
standardise responses across listeners. Then the test signals are played and rated by listeners. Recom-
mendations are that at least 20 listeners are used, that sessions should not last more than 20 minutes,
and that stimuli be played over headphones. Raw scores can be standardised by asking listeners to rate
a set of standard SNR-varying stimuli. This allows the mean opinion score (MOS) to be converted to a
SNR equivalent number in dB.

A disadvantage of the MOS approach is that it does not provide any diagnostic information about
which aspects of the signal were most important to listeners. Scienti�c studies of our perception of
distortion [McDermott, 1968] appear to show that the quality of distorted speech is perceived along
dimensions of overall clarity, signal-background distortion, and subjective loudness. The Diagnostic
Acceptability Measure (DAM) developed in Voiers [1977] builds on this analysis to request that listeners
rate the quality of speech stimuli along a number of dimensions independently, ignoring other aspects.
For example, listeners may be asked to rate the speech solely as �nasal�, or as �mu�ed�; or they may be
asked to rate the background as �buzzing� or �rumbling�. Although such a test provides more information
about the criteria that listeners use to rate the quality of a channel, a disadvantage is that the testing is
time-consuming and that listeners need to be trained and anchored in each dimension.

The assessment of speech that has been passed through noise-suppression or signal enhancement
algorithms creates an additional complexity, since it is not clear whether the overall rating of the channel
by listeners is because of the e�ect of the processing systems on the speech, on the noise or on both. This
has lead to a recommendation for testing signal enhancement systems [ITU, 2003], whereby individual
assessments of the speech signal and the background are requested of listeners in addition to an overall
rating. Each speech stimulus is played three times: �rst listeners are asked to judge the speech itself on
a 5-point scale of signal distortion; then listeners are asked to judge the background on a 5-point scale
of background intrusiveness; �nally listeners are asked to judge the overall e�ect using the 5-point MOS
scale. The types of impairment that arise in telephone systems and their in�uence on MOS scores is
discussed in ITU-T [1993b].

2.3.1.2 Preference tests In preference testing, listeners are typically presented with pairs of speech
stimuli, di�ering only in the processing system. The reference stimuli can come from a second system,
in which case the test can be used to compare two systems, or they can come from a set of reference
processing conditions, in which case the test system is compared to a known set of distortions. Examples
of these are Munson and Karlin [1962] and Hecker and Williams [1966]. A preference system that used �ve
distortion conditions (clean, band-pass �ltered, low-pass �ltered, reverberant, peak-clipped) was proposed
as a standard by the IEEE subcommittee for speech quality measurement [Rothauser et al., 1969].

Another technique for generating a set of reference stimuli to use in preference testing was described
in Combescure et al. [1982]. Here, reference signals were generated using modulated noise [Law and
Seymour, 1962], and listeners were asked to rate their preference of test stimuli over the reference on a
�ve-point scale, called the Degradation Category Rating (DCR) scale. The use of a rating scale when
making preference judgements can also be used even when comparing two systems: with a scale from �3
to +3 for example. This is then called the Comparison Category Rating (CCR) method.

2.3.2 Objective Methods

Although subjective testing is the only way to obtain true judgements of speech quality, a number of
objective methods have been developed, which despite their shortcomings, have been found to correlate
well with subjective ratings, such as the MOS. For a review of objective speech quality measures, see
Quackenbush et al. [1988].
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2.3.2.1 Intrusive Intrusive measures of speech quality compare the processed speech signal with the
original clean signal that went in to the communication channel. Typically the process involves dividing
the signals into short frames of 10-30 ms, and computing a distortion measure between equivalent frames.
An average is then taken over all frames to obtain a global measure. Examples are in Brandenburg [1987]
and Schroeder et al. [1979].

There are many variants of the Segmental SNR approach. Here aligned frames are compared either as
time-domain waveforms, or as spectra, and di�erences between input and output are weighted according
to the true size of the input. An advantage of using a frequency domain measure is that di�erent weights
can be applied to di�erent frequency bands.

A wide variety of spectral distance measures have been proposed to assess the signi�cance of the
distortion caused by the channel. The log-likelihood ratio (LLR), Itakura-Saito, and cepstral distance
measures have all been applied to LP-modelled spectra from the input and output frames [Quackenbush
et al., 1988].

In recent years, perceptually motivated measures have dominated techniques for objective measure-
ment of speech quality. The attempt here is to model the signal processing that takes place in the pe-
ripheral auditory system, including �ltering into auditory channels, compression, loudness pre-emphasis,
subjective loudness compensation and aspects of masking in time and frequency. In a competition to de-
sign a new objective measure capable of performing reliably across a wide range of speech coders, the ITU
chose the PESQ algorithm from Rix et al. [2001] to form the currently recommended technique ITU-T
P.862 [ITU, 2001]. PESQ consists of a complex sequence of processing steps to generate a set of distor-
tion scores as a function of frequency and time. The steps include: amplitude equalisation, telephone
handset �ltering and time alignment, then an auditory transformation which comprises Bark spectrum
estimation, frequency equalisation, gain equalisation and loudness computation. The di�erence between
the loudness spectra arising from the output signal are then compared to the loudness spectra arising
from the original signal are used to estimate a �disturbance� score, which is then adjusted to account for
masking e�ects, and the perceptual di�erence between gains and losses in energy. The disturbance scores
are then averaged across frequency and time taking into account potentially invalid values caused by
signal mis-alignment. The result is a PESQ score on a scale between 0.5 and 4.5 which has been shown to
correlate well with subjective listening tests over a range of telephony channels [Rix et al., 2001]. PESQ
has been evaluated speci�cally for noisy speech processed by noise-reduction algorithms by Kitawaki and
Yamada [2007], where correlations between 0.83 and 0.96 were obtained across a variety of noise types
and processing algorithms.

Composite methods have been used to achieve a better match to subjective scores. A number of
objective methods can be combined using statistical techniques, such as multivariate adaptive regression
splines (MARS) described in Friedman [1991]. A composite objective measure for the objective quality
rating of speech enhancement systems is described in Hu and Loizou [2006]. Five objective measures
are compared with P.835 [ITU, 2003] subjective measures for a range of noise, SNR and enhancement
algorithms. Results showed that some measures, such as segmental SNR, were not good predictors of the
quality of enhanced speech. Multiple linear regression was used to obtain the best predictor for each of
the subjective measures.

2.3.2.2 Non-intrusive In some situations where objective quality measures are useful, the original
clean signal is not available. Assessment must then be based on the processed signal alone. A review of
a number of techniques for non-intrusive objective assessment of quality is given in Rix [2004].

For telephone circuits, non-intrusive measures of speech level, noise level, talker echo and delay can
easily be measured and used to make some prediction of the likely channel quality, for example the Call
Clarity Index (CCI) described in ITU-T P.562 [ITU, 2004a].

To obtain single-ended measures of speech quality, it is necessary to analyse the degree to which the
signal appears to follow the typical statistics of speech. For example Gray et al. [2000] analysed the signal
as a sequence of predicted vocal tract shapes, then rated the plausibility of the shapes and transitions.
Another approach, that works from the auditory processing stages of the PESQ approach, was described
in Beerends et al. [2000]. A recent competition for non-intrusive quality models as organised by ITU-T
led to recommendation P.563 for a perceptual single-sided speech quality measure[ITU, 2004b]. More
recently a number of algorithms have been developed that claim to give signi�cantly better performance
than P.563. Grancharov et al. [2006] developed a low-complexity measure that gave superior prediction
of MOS scores with much less computational cost than P.563, while Kim and Tarraf [2006] describe the
ANIQUE+ model which is trained on the MOS results found for 24 di�erent speech databases covering
a wide variety of distortion conditions. They claim their model predicts MOS performance better even
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Figure 1: Typical speech recording chain.

than the P.862 intrusive method.

2.4 Issues speci�c to the assessment of enhancement systems

Most evaluation measures have been designed to assess the performance of telecommunication channels,
and it could be argued that the assessment of enhancement system creates new challenges. One issue,
for example, arises from the non-linear processing that takes place within enhancement systems so that
the types of distortion that occur when noise is suppressed may not be typical of conventional channels.
Another factor is that most enhancement systems adapt their processing to signal properties, or they
may have many parameters that need to be set: thus it is hard to ensure that a processed stimulus is a
fair representation of the capabilities of the system.

Hansen and Pellom [1998] propose a standard protocol for the assessment of enhancement systems
which uses (i) a standard set of sentences, (ii) a standard set of noise types, (iii) a combination of objective
and subjective assessment methods. The designer of a speech enhancement system can use this protocol
to provide a reference against which to assess his own system.

Another problem might arise with the use of the SRT measurement framework, where the adaptive
procedure is used to adjust the SNR of the speech going in to the enhancement system. The aim may be to
�nd the input SNR which achieves 50% intelligibility at output. However, since the systems are adaptive,
and almost certainly make assumptions about the input signal, the shape of the performance-SNR curve
may not be a typical psychometric function, indeed, many enhancement systems do not perform well on
clean speech and this performance curve may not even be monotonic with SNR.

3 Speech Enhancement

Signal degradations may arise at any point in the recording chain illustrated in Fig.1. It is convenient to
categorise these degradations into the three groups given below according to the way in which they alter
the wanted speech signal; this categorisation also corresponds approximately to their perceived e�ect and
to the appropriate cleaning method.

1. Additive noise that is uncorrelated with the wanted speech signal may arise in either the acoustic
or electronic domain. Its perceived e�ect is to degrade listenability and intelligibility and may, in
extreme cases, completely mask the wanted signal. For some types of additive noise, the spectral
characteristics are stationary or change slowly with time. This is typically true of hum and ampli�er
noise as well as of some environmental acoustic noise sources. Spectral subtraction (Sec. 3.2) and
single-channel adaptive �ltering (Sec. 3.5) have been successful in reducing the perceived level of
such stationary noise sources. Other forms of additive noise are intermittent or highly non-stationary
and their identi�cation and deletion is the subject of model-based and missing data methods (Sec.
3.6 and 3.8). Such non-stationary noise sources include media interference, unwanted co-talkers and
some forms of electrical interference.

2. Convolutive e�ects are perceived as reverberation and poor spectral balance; they di�er from the
previous group because the added noise is strongly correlated with the wanted signal. Reverbera-
tion and echo normally arise from acoustic re�ections and can seriously degrade intelligibility. The
increasing use of distant microphones in hands-free telephony has prompted extensive research into
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reducing the e�ects of reverberation (Sec. 3.11). Bandwidth restrictions and uneven spectral res-
ponse may arise from microphone placement, microphone characteristics and CODEC limitations.
There has been some work on expanding the bandwidth narrow-band telephone signals (Sec. 3.10)
in order to improve listenability but there is little evidence of any intelligibility bene�ts.

3. Non-linear distortion frequently arises from amplitude limiting or clipping in the microphone, am-
pli�er or CODEC. This is perceived as harsh distortion that varies with the signal amplitude. A
similar perceptual e�ect can result from high bit errors in the coded signal used by some CODECs.
Clipped portions of a waveform are easy to identify provided that no subsequent phase distortion is
present and techniques exist for reconstruction the corrupted portions of the waveform (Sec. 3.9).

Most speech enhancement techniques address only one of the degradation mechanisms listed above al-
though some model-based methods (Sec. 3.6) address the �rst two jointly.

A number of books devoted to speech enhancement have been published including Davis [2002], Be-
nesty et al. [2005] and Loizou [2007]. In addition, there are a number of survey papers on the subject
including Lim [1986], Ephraim and Cohen [2006] and Ephraim et al. [2005]. The performance of several
enhancement algorithms was tested by Song et al. [2006] by means of a standardised speech recogniser;
they found that some enhancement techniques reduced the recognition performance. A subjective as-
sessment of 13 enhancement algorithms is given in Hu and Loizou [2007] which, following ITU [2003],
asked listeners for separate judgements on signal distortion, backgound noise and overall quality. The
model-based algorithms (Sec. 3.6) generally gave the best overall quality although a multi-band spectral
subtraction algorithm (Sec. 3.2) developed by the authors themselves also performed well.

3.1 Frame Based Processing

Enhancement methods that operate in the frequency domain normally require the sampled input signal
x(n) to be decomposed into overlapping frames with the `th frame given by

x(n; `) = w(n)x(n+ `M), (1)

for n = 0, · · · , N − 1 where w(n) is a windowing function with �nite support and M ≤ N is the
time increment between successive frames (in samples). The window length, N , is a compromise between
frequency and time resolution and is typically chosen in the range 10−30 ms for speech signals resulting in
a frequency resolution of around 50 Hz. The frame increment,M , is most commonly set at N/2 although,
as noted below, there are theoretical reasons for using M = N/4 despite its higher computational cost.

A Fourier transform is normally performed on each frame to obtain the Short Time Fourier Trans-
form (STFT). If no processing is done on the frame spectra, the original time domain signal can be
reconstructed exactly with overlap-addition [Allen and Radiner, 1977, Allen, 1977]. However, when
frequency-domain processing is performed on the frames, distortion artifacts may be introduced due to
signal discontinuities at frame boundaries and aliasing of rapidly changing spectral coe�cients. The re-
construction properties can be controlled by the choice of the windowing function and the ration M : N .
Martin and Cox [1999] suggest the use of half-overlapping (M = N/2) square-root Hanning windows for
both analysis and synthesis in order to provide perfect reconstruction in the absence of any processing
and, at the same time, to attenuate any frame-boundary discontinuities. An extensive discussion of these
issues is given in Allen [1977] and Allen and Radiner [1977] where it is shown that, for a Hamming analysis
window, a three-quarters overlap (M = N/4) is needed in order to ensure that the spectral coe�cients
are sampled frequently enough to avoid aliasing.

3.2 Spectral Subtraction

The spectral subtraction method of speech enhancement was introduced in Boll [1979] and remains one
of the most widely used ways of reducing additive noise; a good overview of the method and its variants is
included in Virag [1999]. In the simplest form of spectral subtraction, the estimated magnitude spectrum
of the noise, |N̂ (ejω)|, is subtracted from that of the noisy speech to obtain the estimated magnitude
spectrum of the clean speech while the phase of each spectral component is left unaltered. This process
is illustrated in Fig. 3.2 and can be written in the frequency domain as

Ŝ(ejω) = G(ejω)X(ejω) (2)
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Figure 2: Spectral subtration with γ = 1.

where the real-valued gain function, G(ejω), is given by

G(ejω) = max

{
|X(ejω)| − |N̂ (ejω)|

|X(ejω)| , 0

}
(3)

in which the max() function prevents G from becoming negative at low SNRs. Because the gain function
is real-valued, the phase spectrum is uncorrected, however Wang and Lim [1982] demonstrated that little
perceptual improvement resulted from using the true phase spectrum of the clean speech signal. Methods
of estimating the noise spectrum, N̂ , are discussed in Sec. 4.

Berouti et al. [1979] used a more general expression for the gain function

G(ejω) = max


(
|X(ejω)|γ − |N̂ (ejω)|γ

)1/γ
|X(ejω)| , 0

 (4)

and investigated the cases of γ = {0.5, 1, 2}. Despite their �nding that the best results are obtained with
γ = 2, the most popular choice remains γ = 1 .

Subtracting the expected noise spectrum rather than its instantaneous value causes two problems: (i)
there is residual broad-band noise after processing and (ii) individual narrow band spectral spikes remain
and generate tonal noise often referred to as musical noise. A number of improvements have been proposed
to circumvent these problems including the introduction of a gain �oor and oversubtraction [Berouti et al.,
1979, Lim and Oppenheim, 1979] which result in the modi�ed gain function,

G(ejω) = max


(
|X(ejω)|γ − α|N̂ (ejω)|γ

)1/γ
|X(ejω)| , β|N̂ (ejω)|

 (5)

where α ≥ 1 and 0 ≤ β � 1 are coe�cients controlling the oversubtraction and the noise �oor respectively.
By setting the noise �oor coe�cient to β > 0 some broadband noise remains which reduces the perception
of musical noise [Berouti et al., 1979, Virag, 1999]. Berouti et al. [1979] set β to a constant in the range
0.005 − 0.1. Increasing the oversubtraction coe�cient, α, reduces the residual noise but may introduce
distortion of the speech signal if set to high Under the assumption that the noise power is constant while
the speech power varies from frame to frame, the oversubtraction coe�cient α may be varied in each
frame based on the SNR in each frame so that less subtraction is performed in frames with high SNR.

Lockwood and Boudy [1992] use a frequency-dependent oversubtraction coe�cient which is adaptively
updated using a nonlinear function of the smoothed SNR estimate and the peak noise level in recent
frames. This approach is extended in Virag [1999] where both the oversubtraction and the noise �oor
coe�cients are controlled adaptively. Instead of SNR extrema, a perceptual threshold function is used
derived from the Bark spectrum of a roughly enhanced speech signal using standard spectral subtraction.

McAulay and Malpass [1980] observe that spectral subtraction performs poorly when there is no
speech present and introduce a two-state model for speech presence. Using a Gaussian noise model for
the noise, they derive an expression for the probability of speech presence based on the true (or �a priori�)
SNR and the ratio of noisy-signal to noise power (the �a postiori� SNR). The gain function in (4) is then
multiplied by the probability of speech presence which results in greater attenutation when speech is
absent. Hansen [1991] proposes an alternative approach to eliminating musical noise by borrowing mor-
phological operations from image processing. The idea is to apply dilation or closure (dilation followed by
erosion) operators to the time-frequency �image� that results from spectral subtraction in order to smooth
out the residual noise without blurring speech features. To avoid the latter, he performs segmentation
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into voiced/unvoiced/transition/silence and only applies the morphological operations within a segment.
The paper is rather fuzzy on the details. Instead of using a DFT for spectral analysis, Lin et al. [2002b]
and Lin et al. [2002a] use a �lterbank that approximates the critical bands of the ear and, in calculating
the Wiener �lter response, use the di�erence between the noise (estimated using minimum statistics) and
the calculated masking threshold.

3.3 Minimum mean square estimators (MMSE)

In an in�uential paper Ephraim and Malah [1984] proposed an optimal MMSE estimation of the short-
time spectral amplitude (STSA); its structure is the same as that of spectral subtraction but, in constrast
to the Wiener �ltering motivation of spectral subtraction, it optimizes the estimate of the real rather than
complex spectral amplitudes. Central to their procedures is the estimate of SNR in each frequency bin for
which they proposed two algorithms: a maximum likelihood approach and a �decision directed� approach
which they found performed better. The maximum likelihood (ML) approach estimates the SNR (or
�a priori� SNR) by subtracting unity from the low-pass �ltered ratio of noisy-signal to noise power (the
�a postiori� or �instantaneous� SNR) and half-wave rectifying the result so that it is non-negative. The
decision-directed approach forms the SNR estimate by taking a weighted average of this ML estimate and
an estimate of the previous frame's SNR determined from the enhanced speech; the weights used were
0.02 and 0.98 respectively. Both algorithms assume that the mean noise power spectrum is known in
advance (see Sec. 4). Cohen [2004] has proposed modi�cations to the decision-directed approach which
are claimed to improve performance further and showed that a delayed response to speech onsets could
be avoided by making the estimator non-causal. Subsequently, Ephraim and Malah [1985], introduced
an improved version of their procedure which minimized the mean square error of the log spectrum,
rather than that of the power spectrum itself. They reported that this gave noticibly lower background
noise levels without introducing additional distortion. An analysis of why the Ephraim and Malah [1984]
approach gives less musical noise than spectral subtraction is given in Cappe [1994].

Manohar and Rao [2006] use techniques taken from missing feature estimation (see Sec. 3.8) to improve
the performance on non-stationary noise. If the frame SNR is less than 10 dB, they assume that only
the voiced components of speech will be above the noise �oor. They therefore classify broad subbands
as speech or noise using one of several spectral �atness measures and apply additional attenuation in
the �noise� subbands. They claim that this approach works well for noise consisting of a stationary
component added to impulsive bursts; the MMSE enhancer removes the stationary component while the
postprocessor identi�es and attenuates the impulsive bursts.

A number of authors, including Hansen et al. [2006], have incorporated a perceptual masking model
into the enhancement process in order to avoid attenuating noise components that are already inaudible
due to masking.

3.3.1 Super Gaussian Estimates

If the correlation length of the speech signal is larger than the analysis window, the speech spectral
amplitudes will not be Gaussian and a MMSE estimator is not optimal. Lotter et al. [2003] derived
optimal amplitude estimators using a Rayleigh prior for the noise spectral amplitudes (i.e. a Gaussian
prior for the complex amplitudes) and an expression for the speech prior that, with appropriate parameter
settings, could approximate either a Laplacian or Gamma distribution. They demonstrate (see Fig. 3)
that the true histogram of spectral amplitudes does not follow a Rayleigh distribution but instead lies
between a Gamma and Laplace distribution. The found that the use of super-gaussian priors gave
increased noise reduction but with a slight increase in speech distortion at SNR levels below 5 dB. A
similar conclusion was reached by Chen and Loizou [2005] who derived an exact, but very complicated,
expression for the optimum estimator using a Laplacian speech prior.

Martin [2005] derived optimal estimators of the complex spectral amplitudes for Gamma and Laplacian
priors and found that the latter resulted in less musical noise. He too found that the use of a super-
gaussian speech prior gave increased noise supression but with poorer noise quality.

3.4 Subspace Methods

Acoustic models of the vocal tract justify the widely used model of speech as arising from a low-order
autoregressive (AR) process normally treated as time-invariant over intervals of around 20 ms. A conse-
quence of this model is that the speech samples within a frame of this length lie within a low-order
subspace; the aim of subspace speech enhancement methods is to identify this subspace and constrain
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Figure 3: Hisogram of speech spectral amplitudes compared to Gamma, Laplace and Rayleigh distribu-
tions [Lotter et al., 2003].
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Figure 4: Adaptive noise cancellation

the clean speech samples to lie within it. The approach was introduced in Dendrinos et al. [1991] and
became popular following Ephraim and Van Trees [1995] who used an eigendecomposition of the the
autocovariance matrix of the input speech signal to identify the signal subspace and its complementary
noise subspace. The method assumed that the noise was white and that the autocovariance matrix of the
noisy speech therefore consisted of the sum of a low-rank matrix arising from the speech and a multiple
of the identity matrix arising from the noise. They presented linear estimators of the clean speech which
minimized the distortion of the speech subject to constraints on the noise power in either the time or
frequency domain. An alternative formulation, claimed to have numerical advantages and to allow a
recursive procedure, was presented in Jensen et al. [1995] and in Hansen [1997] where an e�cient method
of identifying the noise subspace was developed.

The original approach copes akwardly with coloured noise and a development is given in Hu and
Loizou [2002b,a] where a single non-orthogonal transformation is used to diagonalize both the speech and
noise covariance matrices; this approach was subsequently generalized in Lev-Ari and Ephraim [2003].
An alternative approach to dealing with coloured noise, the Rayleigh Quotient method, is given in Mittal
and Phamdo [2000] and Rezayee and Gazor [2001].

The subspace enhancement algorithms make an explicit compromise between signal distortion and
noise and several authors have suggested basing this compromise on perceptual models to permit higher
noise in spectral regions where it will be masked, thereby allowing a reduction in distortion [Hu and
Loizou, 2003, ?, Kim et al., 2003].

A more recent approach that does not rely on any explicit model of noise or speech is to assume that
the speech signal lies in a low-order manifold that is embedded within a high dimension phase space
(typically of dimension 20 to 30). If, as in Hegger et al. [2001] and Johnson et al. [2003], the phase space
is formed from multiple delayed versions of the signal, then the approach is closely related to that of the
previous paragraph.

3.5 Single-channel Adaptive Filtering

A single channel adaptive �lter can be used to identify components of a signal that are correlated with
previous samples; such correlations arise in particular from periodicity in the speech or noise. The general
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structure of a single-channel adaptive �lter is shown in Fig. 4. The noisy speech signal, x(n), is delayed
by D samples and passed through the �lter to give y(n) which is subtracted from x(n) to generate the
error signal e(n). The �lter response is adjusted via the feedback path to reduce the power of e(n) and
the output of the �lter is formed as a mixture of e(n) and y(n) according to whether the periodic signal
components should be enhanced or supressed. For a stationary input signal x(n), the impulse repsonse,
w(n), of the �lter that minimizes the power of e(n) is given by

w = R−1g (6)

where ri,j = E (x(n)x(n+ i− j)) and gi = ri,−D = E (x(n)x(n+ i+D)) for i, j ≥ 0. It is possible for
the delay, D, to be negative but in this case we must set w(−D) = 0 and must introduce a delay of
D samples in the input to ensure that the system is realisable. The frequency resolution of the �lter is
approximately equal to the reciprocal of its impulse response length in seconds.

The �lter adaptation is most often performed on the w(n) directly using either the LMS or, more
commonly, the NLMS gradient descent algorithm [Haykin, 2002]. The LMS and NLMS algorithms can
be made �leaky� by making the coe�cients decay to zero over time [Mayyas and Aboulnasr, 1997]; this
may improve performance with non-stationary inputs such as speech signal. Alternatively, it is also
possible to use the RLS or sliding-window RLS algorithms [Haykin, 2002] which, at the cost of additional
computation, recursively solve equation (6) exactly. The computation can be reduced by processing the
signal in blocks and evaluating (6) only once per block. It is also possible to implement the adaptive �lter
using a lattice structure and to adapt the lattice coe�cients using gradient descent [Friedlander, 1982].

The use of adaptive �lters for noise reduction was introduced by Widrow et al. [1975]. Although their
primary concern was with two channel adaptive �ltering, in which a separate noise reference signal is
available, they also discuss two applications of the single channel con�guration shown in Fig. 4. In the
�rst of these, the removal of periodic noise from a broadband signal, the output mixing factor is α = 1 and
the delay D is set to be long enough so that s(n) and s(n+D) are uncorrelated. Their second application
is the reverse of the �rst and aims to remove broadband noise from a periodic signal; in this case α = 0
to give ŝ(n) = y(n). A complication of using single channel adaptive �lters for speech enhancement is
that both periodic and broadband components are often present in both speech and noise; it is therefore
necessary to select the parameters of the adaptive �lter carefully to enhance only the wanted components.

Sambur [1978] aimed to enhance the periodic component of voiced speech (α = 0) and used an external
pitch detector to set the delay D to equal a pitch period. He also used a VAD to detect the presence of
speech and inhibited adaptation when speech was absent. With white noise interference (the best case),
he reported an improvement of 7 dB in SNR for an input SNR of 0 dB. Varner et al. [1983] adopted a
similar approach but replaced the pitch detector with an adaptive pitch tracker based on a 3-tap adaptive
�lter with adaptation in the z-plane. Kim and Un [1986] used a negative delay D = −8 with a �lter length
of 17 samples. They set α according to whether they wished to remove broadband (α = 0) or periodic
(α = 1) noise and use a VAD to determine when to adapt the coe�cients. Kawamura et al. [2005] uses
0 ≤ α ≤ 0.5 and describe a method for adaptively choosing the step size of the NLMS algorithm. They
also suggest that improved enhancement can be obtained by cascading two adaptive �lters.

Hoya et al. [1998] aim to remove narrow-band (periodic) noise and accordingly set α = 1. They too
use a VAD to detect the presence of speech, but in their case, they permit adaptation only when speech
is absent. They observe that the adaptive �lter can give a high gain at frequencies where x(n) does not
contain any correlated components. They therefore adopted an indirect approach in which a conventional
two-channel adaptive �lter was used with x(n) as the interfering noise and a white noise signal as the
desired response. The adapted �lter coe�cients were then transferred periodically to a second �lter which
was applied to the input signal x(n). Other authors have suggested the use of �leaky� NLMS to overcome
this problem.

Magotra et al. [1993] di�er from other authors in using the �lter coe�cients w(i) = giL
−1r−10,0 where L

is the length of the �lter. They claim that this results in much more rapid convergence than with NLMS
albeit not to the optimum �lter.

In order to suppress both periodic and broadband noise, Sasaoka et al. [2005] propose a cascade of
three adaptive �lters with di�erent parameters (see Fig. 5). The �rst, with a long adaptation time-
constant identi�es stationary periodic noise such as arise from hum or machinery, the second identi�es
the periodic components of voiced speech while the �nal �lter subtracts both periodic and broadband
noise from the input signal while retaining the voiced periodic components. A slightly modi�ed system
is described in Sasaoka et al. [2007] which uses a variable step size to reduce the adaptation rate of the
�nal �lter when speech is present.

Ltd [2006] describes the adaptive �ltering available in the Cedar Cambridge System (see Sec. ??).
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Figure 5: Three cascaded adaptive �lters used to distinguish between periodic noise and voiced speech
[Sasaoka et al., 2005]

They normally take the decorrelated output mixed with the original signal (0.5 ≤ α ≤ 1) and allow the
user to adjust the �lter length, the �attack time� (adaptation rate) and �release time� (presumed to be
the leaky parameter).

3.6 Model Based

Model-based speech enhancement uses prior knowledge in the form of an explicit stochastic model of
speech and, in some cases, of the interferring noise. A number of di�erent speech models are available
including some combination of autoregressive (AR) models, cepstral coe�cient models, hidden Markov
models and pitch track models. A review of model-based techniques is given in Ephraim [1992].

Gibson et al. [1991] used a Kalman �lter to enhance speech using an autoregressive model for both
speech and noise. The noise model was assumed to be known in advance, while the coe�cients of the
speech model were estimated from the noisy speech during the enhancement procedure. The authors
claimed that the use of an AR model for the noise resulted in signi�cantly better performance than
earlier approaches that assumed the noise to be white.

Yasmin et al. [1999] evaluate enhancement of voiced phonemes using an AR speech model with one
of three di�erent excitation signals: white noise, an impulse train and the LF glottal model [Fant et al.,
1985]. They used a Kalman �lter to enhance speech with added white noise at 5 dB SNR and found
that the LF model gave the best performance with an SNR gain over the white noise model of about
1.3 dB. This di�ers from most model-based enhancement systems in the inclusion of an explicit voice
source and therefore requires explicit pitch tracking which is performed using the LPC residual signal.
As an alternative to Kalman Filtering, Shen and Deng [1999] use an H∞ �lter which does not require an
explicit noise model but instead minimizes the worst possible e�ects of noise on the signal for any given
noise energy. The authors found that this approach conssistently outperformed the use of a Kalman �lter.

Attias and Deng [2001] model both speech and noise as a mixture of LPC spectra. They present
an iterative EM procedure that estimates the LPC noise spectrum, the channel impulse response and
the time-domain clean speech signal. The latter is e�ectively obtained by a weighted average of state-
dependent Wiener �lters where the weights correspond to mixture probabilities. Attias et al. [2001]
presents a similar approach but uses a pretrained mixture model for the noise which simpli�es the en-
hancement procedure considerably.

Enhancement methods based on an AR model of speech generally place no constraint other than
stability on the estimated set of AR coe�cients. In speech coding applications however, strong constraints
are invariably placed on the permitted coe�cient values by transforming them into the LSP domain before
quantization [ITU-T, 1993a]. In an enhancement method described in Hansen and Clements [1991] and
developed inPellom and Hansen [1998], the AR coe�cients are transformed into the LSP domain and
smoothed them across time using a triangular window. In addition, spectral constraints are introduced
within each frame.

Ephraim et al. [1989a] use an HMM to model the speech but represents each state's output distribution
using a mixture of LPC spectra rather than the conventional MFCC coe�cients. The paper presents an
approximate method of training the states which in Ephraim et al. [1989b] is supplemented by an exact
method which gives a small improvement in performance.

Deng et al. [2004] perform enhancement in the log spectral domain using a Gaussian mixture speech
model that incorporates both static and delta (time-derivative) parameters; these are assumed to be
independent within each mixture and to have diagonal covariance matrices in the cepstral domain. The
noise is estimated recursively using the methods described in Deng et al. [2001]. The authors claim that
the short term temporal correlations captured by the use of delta coe�cients are much more important
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than the longer term temporal correlations implied by the use of a Hiddden Markov Model.
Kristjansson and Hershey [2003] use Gaussian mixture models in the log spectral domain for both

speech and noise using a large number (128) of frequency bins for an 8 kHz sample rate. The speech
model comprised either 512 or 1024 mixtures while the noise model had only a single component. They
reported that their technique gave enhanced speech of �exceptional quality� with an improvement in
segmental SNR of 7 to 4 dB over the SNR range -5 to +15 dB SNR with no noticeable speech distortion
at high SNR values.

3.7 Harmonic and Impulsive Noise

In this section we consider noise sources that are speci�cally bounded in the time-frequency domain.
Interference that is temporally short can generally be considered impulsive, noises that are localized in
frequency (whether individually or as a set of related components) can generally be considered harmonic.
It is often possible to identify and clean these types of noise because they are well localized and the
majority of the time-frequency representation of the signal is undamaged. Removing such interference
can improve intelligibility because temporal and spectral masking in human hearing means that nearby
regions of the time frequency plane will be inaudible despite being themselves uncorrupted.

Harmonic noise sources are usually heard as hums and buzzes which exhibit strong periodic compo-
nents and corresponding harmonic structure. Suppression of harmonic noise that is temporally stationary
usually begins with identifying the fundamental frequency. This can be achieved by manual spectral
measurement or, in principle, by automatic methods. Notch �ltering can then be applied both to the
fundamental and to its harmonics to achieve suppression. When harmonic noise is time varying, it is
necessary to track the fundamental and a more sophisticated approach, such as single channel adaptive
�ltering (Sec. 3.5), is required. Hum and buzz removal is a standard component of many audio tools
including, for example, Ltd [2005] and M-Audio [2007].

Examples of impulsive noise are most commonly clicks, pops and crackles. Such noise may result from a
variety of sources including impulsive radio frequency interference, faulty electrical connections and digital
recording errors. Methods for identifying and cleaning impulsive noise are extensively discussed in Godsill
and Rayner [1998] and the references therein. The common techniques usually require manual localisation
of the impulsive noise. With knowledge of the time of occurrence of impulse noise, methods can then be
used to interpolate the undamaged signal that exists before and after the noise in order to remove it. Pure
interpolation methods assume that no useful information remains at the instant of the impulsive noise.
Other methods assume that the original data may still be present during the impulsive noise and attempt
to model it in order to achieve better accuracy. The statistical distribution of the samples, whether known,
assumed or deduced, can be used to condition the interpolation processing. Autoregressive interpolation
assumes the data can be well modelled by an autoregressive model and estimates the parameters of the
autoregressive model using, for example, least squares error minimisation. Pitch information may also
be employed to constrain the interpolated speech further.

3.8 Missing Feature Estimation

Harmonic and impulsive noise (see Sec. 3.7) can readily be identi�ed and deleted in the time-frequency
plane. Missing feature methods aim to identify arbitrarily shaped regions of the time-frequency plane that
are dominated by noise and either remove or reconstruct them. The segmentation of the time-frequency
plane into distinct sound sources is known as Computational Auditory Scene Analysis (CASA) and a
good overview of the �eld is given in Wang and Brown [2006]. For CASA-based enhancement, the key
step is the creation of a mask that identi�es the noise-dominated regions of the time-frequency plane
having an SNR below a suitable threshold, typically 0 to -5 dB. Some authors use a �soft� mask whose
value denotes the probability (or sometimes the degree) of noise-domination. The e�ect of masking on
human intelligibility was studied in Brungart et al. [2006]; they suggest an SNR threshold of 0 dB for a
binary mask.

In Hu and Wang [2004] the input speech is transformed into the time-frequency domain by an audi-
tory �lterbank. Within each time-frequency �pixel� a dominant pitch is determined by searching for an
autocorrelation peak. Compatible contiguous pixels are then grouped into segments and the segments are
tentatively assigned to the foreground or background stream on the basis of their dominant pitch consis-
tency. A pitch contour is now determined for the foreground stream and the foreground/background
assignments are re-evaluated on the basis of compatibility with the pitch contour. Li et al. [2006] extends
this approach by using an objective speech quality measure, P.563 [ITU, 2004b], to determine which
pixels to include in the foreground stream.
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Figure 6: Recognition accuracy for speech corrupted with factory noise when noise corrupted portions of
the time-frequency plane are reconstructed [Seltzer et al., 2004].

Seltzer et al. [2004] uses a Bayesian classi�er to identify missing regions by means of a seven element
feature vector which, for each of 20 Mel-frequency subbands, comprises:

1. the log ratio of the energy from a comb �lter at the pitch period and that from the same �lter but
shifted by half the pitch frequency. The intention is to determine what fraction of the subband
energy is contained in the periodic component. The pitch is determined using the RAPT pitch
detector from Talkin [1995] which combines an autocorrelation method with dynamic programming.

2. the ratio of the highest to the second highest peak in the autocorrelation

3. the ratio of the subband energy to the total energy

4. the kurtosis of the subband signal. The assumption is that clean speech is super-Gaussian (i.e. has
a higher kurtosis than a Gaussian) but that noisy speech will, because of the central limit theorem,
have a lower kurtosis.

5. the ratio of the subband energy to the subband noise �oor

6. the spectral �atness in neighbouring subbands.

7. the subband SNR estimated from spectral subtraction (Sec. 3.2).

The procedure requires a pitch detector which, since the �rst two features are used only for voiced
frames, also serves as a voicing detector. Separate classi�ers are trained for voiced and voiceless speech
in each subband with a �noise pixel� de�ned as one with worse than -5 dB SNR. Clean speech spectra are
reconstructed for the missing regions using cluster-based reconstruction [Raj et al., 2004] in which clean
speech log spectra are modelled by a Gaussian mixture distribution. The parameters of each mixture are
used to calculate a maximum likelihood estimate of the missing data conditioned on the observed non-
masked bins and on it not exceeding the masked bins. The �nal estimate is then formed by weighting each
of these individual estimates by the likelihood of the corresponding mixture. A second, correlation-based,
reconstruction method was described in Raj et al. [2004] which determined correlations between pixels
in the spectrogram and uses these correlations in time and frequency to estimate the missing regions. In
their evaluation tests however, this second reconstruction method performed consistently worse than the
cluster-based method.

The procedure was evaluated using an automatic speech recogniser and, as shown in Fig. 6, improved
recognition performance at an SNR of 10 dB, from 15% to 60% for factory noise. The improvement was
somewhat better for white noise and signi�cantly worse for interference consisting of music. As can be
seen from the �gure, the performance is signi�cantly better than using spectral subtraction to identify
the noisy regions of the time-frequency plane and decreases only slightly when white noise, rather than
matched noise, is used to train the classi�er. It also decreased for both higher and lower SNR levels.
Kim and Stern [2006] use a similar approach but claim that using a wider variety of noises in training
improves performance.

3.9 Restoration of clipped signals

In the absence of other noise sources, clipped bandlimited signals are subject to strong constraints and
their use in signal restoration is discussed in Abel and Smith [1991]. Phase distortion subsequent to
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clipping makes the problem more di�cult because the clipped signal samples are harder to identify and
the amplitude constraints no longer apply.

3.10 Bandwidth Expansion

In narrowband telephony, speech is limited to the frequency range of 0.3 to 3.4 kHz. The objective of
arti�cial bandwidth expansion is to create a wideband version of the bandlimited speech signal by adding
arti�cial low and high frequency components. It is believed that this can improve intelligibility to some
extent but mostly that it will improve a listener's perceptual experience. A review of many existing
methods is given in Iser and Schmidt [2005].

Several algorithms operate on the AR model of the speech signal in (7) where the problem is divided
into extension of the spectral envelope, characterised by a, and extension of the excitation signal, es(n)
[Jax and Vary, 2003]. The extension is considered in two distinct regions a high band of 3.4 to 8 kHz and
a low band in the region 50 to 300 Hz.

s(n) = −aT s(n− 1) + es(n), (7)

In Cheng et al. [1994] an algorithm is developed to extend the high band of the speech signal. A
recovery function based on the statistical dependence between the narrow band and the high band speech
is developed. A vector quantisation approach was studied in Enbom and Kleijn [1999] where a code book
is implemented with corresponding narrow-band and wide-band spectra using the MFCCs as features.
The wide-band vector with the smallest error calculated with the narrow-band spectra is selected. This
also aims to reconstruct only the high-band region.

3.11 Reverberation

Reverberation reduction methods generally fall into two major categories: speech model enhancement and
blind system identi�cation and equalisation where the former has had most success for single-microphone
applications.

3.11.1 Speech model enhancement

An early technique in the class of speech enhancement dereverberation, that has not been of recent
interest, was described in Oppenheim et al. [1968] and Oppenheim and Schafer [1975]. The authors
observe that simple echoes are result in distinct peaks in the cepstrum of the speech signal. Consequently,
they use a peak picking algorithm to identify such peaks and attenuate them. They also consider an
alternative approach in which a low-pass weighting function is applied to the cepstrum on the assumption
that most of the speech energy lies in the lower quefrencies. However, this approach was not found suitable
for more complex reverberation models [Oppenheim et al., 1968].

A class of techniques emerged from the observation that the residual signal following linear prediction
analysis contains peaks corresponding to the excitation events in voiced speech together with additional
peaks due to the reverberant channel. Several methods for processing the LPC residual have subsequently
been developed. These aim to suppress the additional peaks due to reverberation without degrading the
original components of the residual in order that dereverberated speech can be synthesised using the
processed residual and the all-pole �lter resulting from prediction analysis on the reverberant speech.
It is assumed that the e�ect of reverberation on the AR coe�cients is negligible Gaubitch et al. [2006],
Griebel and Brandstein [1999, 2001].

Yegnanarayana and Murthy [2000] provided a comprehensive study of the prediction residual of rever-
berant speech. They demonstrate that reverberation a�ects the prediction residual di�erently in di�erent
speech segments, depending on the energy in the signal and whether a segment is voiced or unvoiced.
Motivated by these observations, the authors proposed using a regional weighting function based on the
signal-to-reverberant ratio in each region together with a global weighting function derived from the
short term signal energy. For the derivation of the SRR based weightings, the entropy function and the
normalised error were used.

An adaptive algorithm was proposed in Gillespie et al. [2001] using a kurtosis maximising subband
adaptive �lter. The authors demonstrate that the kurtosis of the prediction residual decreases as a
function of increased reverberation, which was also suggested in Yegnanarayana and Murthy [2000]. They
use this observation to derive an adaptive �lter that maximises the kurtosis of the prediction residual.
The �lter is applied directly to the observed signal rather than to the prediction residual and thus avoids
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the the need for an LPC synthesis stage. The adaptive �lter is implemented in a multi-channel subband
framework for increased e�ciency. This approach is an example of a hybrid method between speech
enhancement and blind system identi�cation and inversion. An extension to this method was presented
in Wu and Wang [2006], where it was combined with spectral subtraction to remove residual reverberation
due to late re�ections.

In Gaubitch and Naylor [2007] a spatio-temporal averaging method is described. The peaks in the
LPC residual due to glottal closure instances are identi�ed and enhanced glottal cycles are obtained by
temporal averaging of neighbouring cycles. Each processed glottal cycle is used to update an equalisation
�lter that is applied during unvoiced speech regions. The LPC based methods described above all achieve
moderate reverberation reduction when a single microphone is used.

A related method, proposed by Nakatani et al. [2005], assumes a sinusoidal speech model. First the
fundamental frequency of the speech signal is identi�ed from the reverberant observations, then follows
the identi�cation of the remaining sinusoidal components. Using the magnitudes and phases of these
sinusoids, an enhanced speech signal is synthesised. Subsequently, the reverberant and the dereverberated
speech signals are used to derive an equivalent equalisation �lter. The processing is performed in short
frames and the inverse �lter is updated in each frame. It is shown that this inverse �lter does tend to the
RIR equalisation �lter, however, it is very long and takes over an hour of training.

Spectral subtraction for dereverberation using a statistical model of the room impulse response was
proposed in Lebart et al. [2001]. Further developments of this method, including extension to multiple
microphones and generalisation of the room impulse response model, were done in Habets [2007].

3.11.2 Blind system identi�cation and equalisation

In blind system identi�cation, an estimate of the acoustic impulse response is �rst obtained from the
speech signal a�ected by convolutive distortion which is then used to design an equalising �lter. The
blind identi�cation process for a single microphone relies on the assumption that the channel varies much
more slowly than the speech signal. In Hopgood and Rayner [2003] an all-pole model of the channel
impulse response is used in contrast to the more commonly used FIR model. The channel impulse
response is assumed stationary while the source signal is assumed to be a locally stationary, but globally
nonstationary, AR process. In this way, the all-pole channel parameters can be identi�ed by observing
several frames of the input signal and collecting information about the poles either by using a histogram
approach or a more robust Bayesian probabilistic framework. Over several frames, the poles due to the
stationary channel become apparent and the channel can thus be identi�ed. One major advantage of
this method is that, by using an AR model of the channel, the order of the channel is reduced compared
to the FIR channel models. A similar approach for FIR channels was proposed in Pacheco and Seara
[2005]. A major problems with blind system identi�cation methods remains their sensitivity to model
order estimation errors and to additive noise.

If the impulse response, h(n), is available, for example, from a blind system identi�cation algorithm,
equalisation can be achieved by an inverse system, G(z), satisfying G(z)H(z) = κz−τ , where κ and τ
are arbitrary scale and delay factors. However, direct inversion of an acoustic channel is normally not
feasible since: (i) it can be several thousand taps in length depending on the acoustic characteristics of
the recording environment and the sampling frequency, (ii) it is generally non-minimum phase [Neely
and Allen, 1979] and (iii) it may contain spectral nulls that after inversion give strong peaks in the
spectrum resulting in narrow band noise ampli�cation. Alternative approaches have been studied for
single channel inversion. For example, single channel least squares inverse �lters [Mourjopoulos et al.,
1982, Mourjopoulos, 1994] can be designed by solving the optimisation problem

Ĝ(z) = argmin
G(z)

∥∥G(z)H(z)− κz−τ
∥∥2 (8)

This requires extremely long inverse �lters and results in large processing delay. Homomorphic inverse
�ltering has been investigated [Neely and Allen, 1979], where the impulse response is decomposed into a
minimum phase component, Hmp(z) and an allpass component, Hap(z), such that H(z) = Hmp(z)Hap(z).
Consequently, magnitude and phase are equalised separately, where an exact inverse can be found for the
magnitude, while the phase can be equalised using, for example, matched �ltering [?]. In a comparative
study, Mourjopoulos concluded that the homomorphic approach can give more accurate results than the
least squares method [Mourjopoulos et al., 1982], however, the decomposition of the impulse response into
a minimum phase and allpass components is problematic and computationally expensive in practice and
therefore the least squares approach is usually preferred. An important result is that audible distortions
occur in the processed speech signal if equalisation is performed only on the magnitude response [?Neely
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and Allen, 1979]. The equalisation methods described above approximate an in�nite support system with
a �nite length �lter and consequently, only approximate equalisation can be achieved.

4 Noise Estimation

In many speech enhancement algorithms, the �rst step is to estimate the power spectrum of the noise.
To do this, it is necessary to make use of prior knowledge about di�erences between the characteristics
of noise and speech. Common assumptions are

1. that the short-time power spectrum of noise is more stationary than that of speech

2. that, within a narrow frequency band, the speech energy frequently falls to a low value

3. that the frequency of periodic noise sources changes very slowly with time; this is in contrast to
voiced speech whose period changes more rapidly.

The estimation of the noise is almost always performed in a spectral or related domain for several reasons:
speech and noise are partially separated in the spectral domain; spectral components of both speech and
noise are somewhat decorrelated; psycho-acoustic models are conveniently applied in this domain. Thus
the following domains, all possessing di�erent advantages, are used: (i) complex spectral amplitudes, (ii)
spectral magnitudes, (iii) spectral powers, (iv) log spectral powers, (v) Mel-spaced spectral amplitudes,
(vi) Mel-spaced log spectral powers, (vii) Mel cepstral coe�cients, (viii) AR coe�cients. In each of these
domains, the coe�cients are most frequently taken to be Gaussian and uncorrelated; these assumptions
are rarely well substantiated.

A well-presented evaluation of several noise spectrum estimation techniques is given in Ris and Dupont
[2001] who found that the best performance of the tested algorithms was given by a combination of
minimum statistics and harmonic �ltering.

4.1 Noise Models

4.1.1 Stationary Spectral Model

The most common model of the noise is that it is a Gaussian process with a slowly changing power spec-
trum. The spectrum is normally represented by individual spectral, mel-spectral or cepstral coe�cients.
In Ephraim et al. [1989a] an all-pole spectrum model is used for the noise process and an approximation
to the maximum likelihood estimate of the AR parameters is provided by conventional LPC analysis.

4.1.2 Two-component model

Rennie et al. [2006] di�er from most authors in modelling the noise as the sum of a slowly evolving
component and a random component. They claim that this model is both more realistic and allows
better tracking of the evolving component. Both components are modelling in the Mel log power spectral
domain. The power of the continuously evolving component, lt, is modelled as a 1st order Gaussian AR
process in each frequency bin, i.e. (lt+1|lt) ∼ N

(
lt+1; lt, σ

2
d

)
while the random component is zero-mean

Gaussian with variance σ2
n. To account for abrupt changes in noise level (e.g. opening a car window)

there is a small but non-zero probability that the continuously evolving component reverts to its prior
distribution which is a mixture of diagonal-covariance Gaussians; as an alternative to reverting to a
�xed prior, they also suggest reverting to a minimum-statistics noise estimate. The paper gives update
procedures for the mean and variance of the noise level components under the assumption of a �xed
Gaussian mixture model for the speech. A similar noise model was also used implicitly by Manohar and
Rao [2006] (see Sec. 3.3).

4.1.3 Hidden Markov Model

A number of authors present their noise model as a multi-state HMM, but in most cases they actually
use only a single state (albeit with multiple mixture components). Graciarena and Franco [2003] review
ways of estimating a noise HMM.
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Figure 7: Power in the 250Hz subband of a noisy speech signal and the output of a minimum �lter with
T = 0.8 s [Martin, 1994]

4.2 Minimum Statistics

The use of minimum statistics for noise estimation was introduced in Martin [1994] and extended in
Martin [2001]. The assumption is that in any frequency bin there will be times when there is little speech
energy and that the energy will then be dominated by the noise. If we assume that these times occur at
least once per time T , we can estimate the noise power as the minimum power that has arisen within the
past T (typically 0.5 to 1.5 seconds). This is illustrated in Fig. 7 in which the upper trace shows the power
in one subband (centred at 250 Hz) of a noisy speech signal. The lower trace in Fig. 7 shows the output
of a minimum �lter with T = 0.8 s. The output of the minimum �lter will inevitably underestimate the
true noise and it is necessary to compensate for this bias. In Martin [2001] the �xed compensation factor
used in the original algorithm was replaced with factor that varied with time and frequency.

A similar approach was used in Doblinger [1995] but, instead of taking the minimum over T , the noise
speech spectrum is smoothed using two di�erent time constants; a short time constant is used when the
energy in a frequency bin is decreasing to ensure rapid adaptation to a new minimum while a long time
constant is used when the power increases to prevent adaptation to the speech energy. The approach
is computationally e�cient but is considered to perform less well than the minimum statistics approach
because selecting the long time constant is a compromise between the response to sudden increases in
noise and preventing the speech power from modulating the estimated noise power.

Stahl et al. [2000] noted that the use of the minimum makes the technique sensitive to outliers and
investigated the use of other quantiles instead. They came to the conclusion that the median gave the
best results when evaluated using a speech recogniser. Few people, however, appear to have followed
up this work although Manohar and Rao [2006] demonstrates that it performs poorly on non-stationary
noise.

4.3 Voice Activity Detectors (VADs)

A straightforward way to estimate the noise spectrum is to use a voice activity detector (VAD) to identify
when speech is absent and to average the signal powers spectrum during these intervals. The appropriate
averaging time-constant depends on the assumed stationarity of the noise. Many di�erent VAD methods
have been used.

4.3.1 Energy Histogram

McAulay and Malpass [1980] proposes a modi�cation of an idea, attributed to Roberts [1978], which is
based on the bimodality of the signal energy histogram taken over a 4 second window. Their algorithm
determines an adaptive energy threshold to decide on the presence of speech but also includes �xed upper
and lower thresholds which take priority. The adaptive threshold is chosen to lie at the 80th centile of the
histogram of energies that are below the upper �xed threshold. This approach is modi�ed in Compernolle
[1989] which �ts a 2-component Gaussian mixture model to the histogram of log energy and assumes that
the lower component represents the noise. A similar approach is used by Hirsch and Ehrlicher [1995] in
which an adaptive threshold is used in each frequency bin to eliminate speech frames and the peak of
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(a) (b)

Figure 8: (a) Spectral magnitude envelope and (b) histogram of the 500 Hz subband of a noisy speech
signal with SNR = 5 dB [Hirsch, 1993]

the histogram of recent noise frames is used as an estimate of the noise power in that bin. The reported
accuracy of this approach, which is an extension of Hirsch [1993], is much greater than that of the VAD
approach. The approach is illustrated in Fig. 8 which shows (a) the spectral magnitude envelope of the
500 Hz subband of a 4 second speech segment that has been corrupted with �ltered Gaussian noise and
(b) histogram of the values that it takes. The highest peak in the histogram arises from the noise whereas
the much smaller peaks at higher magnitudes arise from the speech.

Freeman et al. [1989] describe the VAD used for GSM phones; it e�ectively compares the SNR averaged
over all frequency bands to a threshold in order to perform the VAD decision. The same criterion was
used in Yang [1993].

The NIST SPQA package [NIST, 1992] includes an algorithm to measure the noise level of the speech.
It �ts two raised cosine functions to the noisy speech log power histogram and assumes that the lower
of the two corresponds to the noise. A similar approach is used in Dat et al. [2006] but instead a 2-
component GMM is used. It is initialised using k -means clustering and then estimated using the EM
algorithm.

Krubsack and Niederjohn [1994] observe that the energy in voiced speech is predominantly low fre-
quency while that of unvoiced speech is often predominantly high frequency. They therefore use a voicing
detector from Krubsack and Niederjohn [1991] to distinguish between the two and use di�erent noise
estimation algorithms for the two cases. For voiced speech, they use a comb �lter at low frequencies
to remove the speech and assume that speech energy is negligible at high frequencies. For unvoiced
segments, they estimate only the low frequency noise spectrum.

4.3.2 Magnitude Histogram

Zhang and Gazor [2002] and Gazor and Zhang [2003b] demonstrate that the DFT or KLT coe�cients
of speech signals follow a Laplacian distribution rather than the more commonly assumed Gaussian or
Gamma distributions. They therefore propose in Gazor and Zhang [2003a] a voice activity detector that
models the noisy signal subband coe�cients as the sum of zero-mean Laplacian and Gaussian random
variables respectively. They �nd that using the KLT rather than the DFT gives marginally better
performance.

4.3.3 Energy Waveform

Marzinzik and Kollmeier [2002] presents an algorithm for speech pause detection that uses the energy
waveform in low, high and full frequency bands. The maximum and minimum values of these are tracked
and used to decide when speech pauses are present. The performance of this VAD is compared to that
used in G.729 [ITU-T, 1993a] and shown to perform better.

In Sugiyama et al. [2002], Kato et al. [2003] and Kato et al. [2006] a weighted noise estimation
procedure used in 3G handsets is described. For each frame, a raw noise estimate is generated that is
approximately equal to the the noisy speech divided by the estimated SNR. The smoothed noise estimate
is then formed by averaging, in each frequency bin, the N most recent raw estimates for which the SNR
was below a �xed threshold.
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A VAD described in Annex A of ETSI Standard ES202050 [ETSI, 2007] identi�es the increase in
energy associated with the onset of voiced speech. It makes a VAD decision based on the values of three
indicators: (a) a sudden increase in overall energy (b) a sudden increase in low frequency energy and (c)
a sudden increase in the variance of energy across the spectrum.

4.3.4 Periodicity

Lin et al. [2007] detect voiced speech by looking for strong periodicity. They do this by assuming that
the fundamental is a subharmonic of the largest spectral peak, summing all its aligned harmonics below
1.25 kHz and measuring how sharp the resultant peak is. Unvoiced speech is assumed to be possible for
a 0.2 s hangover interval following a burst of voiced speech. This is preceded by the speech probability
detector of Cohen and Berdugo [2002] to give a composite VAD which controls noise adaptation.

Lin and Goubran [2005] combine a periodicity detector based on the Fourier transform of the AMDF
function with a modi�ed minimum statistic approach to control noise spectrum averaging.

4.4 Soft Decision VAD

Rather than using a hard VAD decision, it is possible instead to use a soft decision so that the estimated
noise spectrum is updated all the time but with a time-constant that varies according to the probability
of speech presence, i.e. a long time constant is used when speech is absent. The soft-decision VAD that
is used by Sohn and Sung [1998] is based on a likelihood ratio that is equivalent to the Itakura-Saito
distortion measure or cross entropy between background noise and observed signal Shore [1981], Gray
et al. [1981]. A similar approach is used in Malah et al. [1999] where the estimated SNR averaged across
all frequencies is used to control adaptation together with an additional frequency-dependent factor that
depends on the estimated speech presence in each frequency bin. A simpler version of this approach is in
Lin et al. [2003a,b] where the noise adaptation time constant depends on a sigmoid function of the noisy
speech to noise ratio.

In Cohen and Berdugo [2001, 2002], a speech probability estimate is determined by taking the ratio
between the power in the current frame and its minimum within a speci�ed time frame. This is then
used to control which sections of the noisy speech are averaged to estimate the noise power. The authors
claim that this gives an estimate with less bias and reduced variance than the original approach from
Martin [1994]. An improved version of the noise estimator was given in Cohen [2003] which uses a two-
iteration procedure that re�nes an initial speech presence detector. Rangachari et al. [2004] extends this
approach in two ways: it uses a di�erent way of calculating the minimum spectrum that has a lower
latency (0.5 instead of 1.5 s) and a frequency-dependent threshold on the ratio of noisy speech spectrum
to minimum spectrum which is used to estimate the �speech presence probability� and thence to control
the adaptation rate. The algorithm is improved slightly in Rangachari and Loizou [2006] by smoothing
the speech presence probability over time which implicitly accounts for its correlation between successive
frames. The paper includes comparisons with Martin [2001], Hirsch and Ehrlicher [1995], Cohen and
Berdugo [2002] and Cohen [2003].

4.5 Noise Estimation using a Speech Model

Joint estimation of speech and noise from a combined speech and noise model has been widely used
in speech recognition in which the probability of a speech state is determined by marginalising over all
possible noise states. The technique was introduced in Varga and Moore [1990] and extended by Gales
[1995] and in subsequent papers [Gales and Young, 1993, 1995, 1996]. These authors used HMMs to
model both speech and noise in the mel-cepstral domain giving a combined model whose state count
was the product of the speech and noise model counts. In practice, the noise model normally had very
few states and often only one. Modi�cations have subsequently been been made in [Chang et al., 1998,
Chang and Chung, 1998]. Kristjansson et al. [2001] use a noise GMM; they found that selecting the max
likelihood noise state performed similarly to marginalising over all noise states. A good introduction is
given in Raju [2003].

When using this approach for noise estimation, the noise state may be estimated by marginalising
over the speech states. This approach was adopted in Yao and Nakamura [2002], Yao and Lee [2003]
where a particle �lter is used to represent the possible sequences of speech states. In this application
the speech model can be quite simple and the authors used only 18 states with 8 Gaussian mixtures per
state in the log spectral domain. In a development of this work, Lee and Yao [2004] estimates the noise
characteristics in the log spectral domain using EM but without a particle �lter. A di�culty with the
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joint estimation approach when used for enhancement is that it is necessary to estimate the absolute
speech energy; speech models developed for recognition generally ignore the overall speech level since it
does not a�ect the speech state sequence. Subramanya et al. [2005] model speech using a 4 component
GMM in the magnitude-normalised spectral domain rather than the more usual cepstral domain; this
is the correct domain for adding noise and speech and its use avoids the di�culties that arise from the
non-linear logarithmic transformation into the cepstral domain. They claim that applying magnitude
normalisation signi�cantly reduces the complexity required in the model although it entails modelling
the overall speech energy separately.

Using a sinusoidal model of speech from McAulay and Quatieri [1986] and an assumption that the
noise signal has zero kurtosis, Nemer et al. [1999] estimates the speech energy in each of �fty subbands
from the kurtosis of the bandpass �ltered signal.

In T. Kristjansson and Deng [2001] and Frey et al. [2001a] an EM approach is used to estimate the
speech, noise and channel adaptively in the log spectrum domain. Each of these three components is
represented with a Gaussian mixture model. In most of the examples they give, the noise model comprised
only a single mixture but, for the case of aircraft noise at an airport, they investigated the use of up to 16
mixtures (the speech model, in contrast, used 256 mixtures). A 1st-order Taylor-series approximation is
used to linearise the mapping between the log power domain and the linear power domain. In Frey et al.
[2001b], the authors found that their adaptive noise modelling reduced speech recognition word errors by
about 15% compared to a non-adaptive model estimated from the beginning of the recording and that
increasing the noise model from 1 to 4 mixtures gave a further improvement of up to 0.3%. A similar
model (in the Mel log spectral domain) is used in Deng et al. [2003b] who develop a recursive estimate of
the parameters of the single-mixture noise model which was extended to a Bayesian formulation in Deng
et al. [2003a]. A very similar, albeit non-iterative, approach is used in A�fy and Siohan [2001, 2004].

5 Databases

5.1 Speech Enhancement Databases

There are a number of publicly or commercially available databases of noisy speech that may be of use for
the evaluation of speech cleaning methods. The precise de�nition of SNR is not wholly uniform between
databases, but most use the method described in ITU-T P.56 [ITU-T, 1993c] to de�ne a measure of the
active speech level that is una�ected by pauses in the speech activity. All the databases use 16 bit linear
quantisation.

5.1.1 NOISEX

The NOISEX database [Varga et al., 1992, Varga and Steeneken, 1993] was created to provide standardised
test material for speech recognition in noise and has been widely used. It contains speech recordings from
two speakers (one male and one female) reading tables of isolated digits and digit triples of total duration
16 min per speaker. The database also includes eight noise recordings taken from a NATO database
[Steeneken and Geurtsen, 1988] each of about 3.8 min duration. All data is recorded at 16 kHz sample
rate. The noise signals are:

Speech Noise Broadband noise whose long-term spectrum matches that of speech

Machine Gun Repeated �ring bursts from a 0.5 calibre machine gun

STI Test Signal A test signal for the measurement of the Speech Transmission Index as described in
[Steeneken and Houtgast, 1980].

Lynx recording from the platform of a Lynx helicopter

F16 Cockpit noise recorded from the copilot seat of an F16 �ghter under various �ight conditions.

Car A Volvo 340 travelling on an asphalt road at 120 km/h

Factory Noise from a car factory including electrical welding

Operations Room recording from the operations room of a destroyer
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5.1.2 TIMIT, NTIMIT and CTIMIT

The TIMIT database contains recordings from 630 speakers, each of whom speaks 10 sentences lasting a
few seconds each. Two of the sentences are intended to distinguish between American dialects and are
read by all speakers. About 70% of the speakers are male.

The NTIMIT database was created by playing the TIMIT recordings over telephone landlines to give
speech that is realistically degraded [Jankowski et al., 1990]. In a similar way, the CTIMIT database was
created by recording the TIMIT sentences over cellphone lines [Brown and George, 1995].

5.1.3 Aurora

The Aurora database [Hirsch and Pearce, 2000] contains extracts from the TIDIGITS database [Leonard,
1984] which have been �ltered to telephone bandwidth and corrupted with added noise. The spoken
sentences consist of digit strings containing between one and seven digits. Eight noises are used: subway,
babble, car noise, exhibition hall, restaurant, street, airport and train station. The recordings are at 8
kHz and have all been �ltered with a G.712 characteristic.

5.1.4 ITU-T Coded Speech Database

This database [ITU, 1998b], originally developed for evaluating the G.729 codec [ITU-T, 1993a], contains
speech (short sentences) that is normalized for level and then degraded by passing it through the addition
of acoustic noise, passage through one or more codecs and the introduction of channel errors. The database
includes MOS ratings of the resultant degraded speech signals. The acoustic noise sources are white noise,
o�ce babble, two examples of car noise, background music and street noise.

5.1.5 Noizeus

The Noizeus database was created to evaluate speech enhancement algorithms and consists of spoken
sentences to which has been added the eight noise recordings from the Aurora database (Sec. 5.1.3) at
0, 5, 10 and 15 dB SNR. There are thirty di�erent sentences taken from Rothauser et al. [1969] with
�ve spoken by each of six speakers. The recordings are at 8 kHz and have been �ltered by a simulated
telephone handset.

5.1.6 SpEAR Database

The Speech Enhancement and Assessment Resource [Wan et al., 1998] is under development at the Centre
for Spoken Language Understanding (CSLU) at the Oregon Graduate Institute. It aims to create a speech
database and toolkit for assessing speech enhancement algorithms. The database currently includes
acoustically combined speech and noise and also �Lombard speech� recorded in a noisy environment.

5.1.7 RSPL Noises

The Robust Speech Processing Lab at Univ Colorado has made available 10 noise source recordings each
lasting only about 4 seconds at 8 kHz sampling rate. The noises are: aircraft cockpit, babble, city rain,
communications channel, helicopter �y-by, automobile highway, large city, large crowd, PC computer
cooling fan, SUN computer cooling fan, white Gaussian noise [Hansen and Arslan, 1995].

5.2 Acoustic Impulse Responses

Acoustic impulse responses can be measured with a number of di�erent acoustic sources: a true impulse
(e.g. a gun shot), white noise, pseudo-random noise ( MLS or IRS sequences), a linear or logarithmically
swept sine wave. A discussion of the relative methods is given by Stan et al. [2002] who conclude that
the MLS or IRS techniques perform best in the presence of non-white noise but that the logarithmic
swept sine wave approach [Farina, 2007] is better in quiet environments. Ajdler et al. [2007] present a
technique for measuring all impulse responses along a line by means of a moving microphone. A number
of measured impulse responses are available and are described below; some use a single microphone while
others use a 4-microphone recorder to retain directional information.

• Audioease [2007] manufacture the Altiverb plugin for convolutional reverberation and which in-
cludes a large number of recorded impulse resonses including cars, planes and rooms.
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• Waves [2007] manufacture the IR Parametric Convolution plugin which includes a number of recor-
ded impulse responses from concert halls, clubs, cars and other rooms.

• Noisevault [2007] provides measured impulse responses from a number of rooms and concert halls
as well as from microphones and other recording equipment.
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