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ABSTRACT
We propose a data driven, non-intrusive method for speech
intelligibility estimation. We begin with a large set of speech
signal specific features and use a dimensionality reduction
approach based on correlation and principal component anal-
ysis to find the most relevant features for intelligibility pre-
diction. These are then used to train a Gaussian mixture
model from which the intelligibility of unseen data is in-
ferred. Experimental results show that our method gives a
correlation with subjective intelligibility of 0.92 and a corre-
lation of 0.96 with the ANSI standard Speech Intelligibility
Index.

1. INTRODUCTION

Speech intelligibility is a measure of how much of what is
spoken is recognized by a listener. It is an important quan-
tifier for speech communication applications in telecommu-
nications, hearing aids and intelligence gathering in law en-
forcement applications. Intelligibility scores can be classi-
fied as being either subjective or objective.

Subjective speech intelligibility scores are obtained
through listening experiments where subjects listen to speech
samples and are either asked to repeat the words they have
heard or else to select one from a predefined set of answers.
It is necessary to perform the experiments on many subjects
in order to get a statistically reliable estimate, which makes
the task of obtaining subjective intelligibility scores expen-
sive and time consuming. Objective intelligibility estima-
tion that can be performed algorithmically is clearly advan-
tageous and several methods have been developed, including,
the ANSI standard Speech Intelligibility Index (SII) [1] that
is a development of the Articulation Index (AI) [2]. These
measures are intrusive in nature as they require knowledge
of the clean speech signal, and although they are useful in
controlled experiments, there are many situations where only
the noisy speech signal is available; in such cases, it would
be valuable to have a non-intrusive measure that operates di-
rectly on the observed signals.

We propose a data driven approach to non-intrusive intel-
ligibility estimation inspired by the Low Complexity Speech
Quality Assessment (LCQA) method developed by Gran-
charov et al. [3]. We begin by defining a large set of local
and global speech specific features. Subsequently, we em-
ploy a dimensionality reduction scheme based on correlation
and Principal Component Analysis (PCA) in order to find the
features that are best suited for predicting speech intelligibil-

ity. Finally, these features are used to train a Gaussian Mix-
ture Model (GMM) which is used to infer the intelligibility
of new, unseen, data from the noisy speech signal alone.

The remainder of the paper is organized as follows. In
Section 2, we review the LCQA method as it was origi-
nally proposed, for non-intrusive quality estimation. We then
show, in Section 3, how the LCQA framework can be devel-
oped for our non-intrusive intelligibility measure. Section 4
presents results of our measure in terms of its correlation with
subjective intelligibility scores as well as with intrusive intel-
ligibility measures. Finally, conclusions from this work are
drawn in Section 5.

2. LCQA REVIEW

LCQA [3] is a data driven approach to speech quality eval-
uation which has been shown to correlate well with subjec-
tive Mean Opinion Score (MOS) [4]; the correlation is higher
than that of the standard ITU-T P.563 [5] which, like LCQA,
is non-intrusive. In the following, we summarize the key fea-
tures of LCQA and refer the reader to [3] for further details.

A frame selection scheme is developed using thresholds
applied to the spectral flatness, spectral dynamics and the
speech variance per frame features. This allows a flexible
voice activity detection to be performed, based on the opti-
mization of the feature thresholds that maximize the quality
estimate. The algorithm models the statistical properties of
the per frame features using their mean, variance, skewness
and kurtosis. In modeling the global properties of the op-
timal per frame features, the dimensionality of the feature
space is significantly reduced to 44 features for each speech
utterance.

In order to optimize the performance of the classifica-
tion, it is required to retain the minimum number of global
features that maximize the estimation criteria (quality in the
original context). This is achieved by the sequential floating
backward selection algorithm [6], [7]. After a minimization
of the root-mean-square error (RMSE) performance of the
LCQA algorithm, the final feature vector is reduced to 14
dimensions.

The LCQA algorithm is trained on a large number of
speech utterances (typically 2 sentences separated by a small
pause) that have been subjectively labeled (through listen-
ing experiments for example) with the mean opinion score
(MOS) [8]. Fourteen global features are extracted for each
utterance and a GMM is trained on the joint distribution of



the global features and the MOS for each utterance. The
GMM containing M mixtures is defined by a set of mean
vectors, covariance matrices and mixture weights, estimated
using the Expectation Maximization (EM) algorithm [9].

The global feature vector describes the statistical proper-
ties of certain aspects of the speech signal; at no point explicit
auditory or cognitive modeling is performed. This suggests
that the algorithm framework may be able to model different
subjective criteria, such as the intelligibility of the utterance.

3. NON-INTRUSIVE INTELLIGIBILITY
ASSESSMENT

In this section, we describe the Low Cost Intelligibility
Assessment (LCIA) algorithm for estimating the speech in-
telligibility by deriving per frame features from the speech
waveform, then applying a statistical model followed by a
dimensionality reduction and GMM mapping. We also de-
scribe the database used for evaluation of the algorithm and
the training procedure.

3.1 Algorithm overview
The key algorithm blocks are illustrated in Fig. 2 and de-
scribed further in this section.

3.1.1 Derived Features

The first step is a Linear Prediction Coding (LPC) using
20 ms, non overlapping windows of the speech signal. The
frequency response of the LPC coefficients is used to derive
a number of per frame features including the spectral flat-
ness, spectral centroid, excitation variance and spectral dy-
namics. In addition, the speech variance and the iSNR (de-
fined in Section 3.2) per frame are computed giving a total of
6 per frame features. In addition, the first time derivatives of
these (except spectral dynamics) are also computed, resulting
in 11 features per frame.

The statistical properties of the pitch period are used in
the LCQA algorithm and pitch estimation in low SNR envi-
ronments is a challenging task, where current algorithms may
fail to perform reliably in such conditions [10]. For the pur-
pose of intelligibility estimation in very noisy speech, pitch
information obtained through the YIN algorithm [11] was
found to correlate poorly with the subjective score. Given the
computational complexity of the pitch tracker, and the poor
robustness of pitch estimation algorithms in noisy speech,
pitch has not been included as a feature.

3.1.2 Global Features

The per frame features are transformed into N per utter-
ance features by modeling the statistical properties of the
per frame features through the mean, variance, skewness and
kurtosis operators. This statistical description gives a global
description of the per frame features and helps to reduce con-
siderably the dimension of the feature set.

3.1.3 Dimensionality Reduction

In order to improve the performance of the classification, it
is necessary to retain those features that model the various
properties of the signal most effectively. We apply a two step
dimensionality reduction scheme based on a feature subset
selection followed by a feature extraction step on the training
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Figure 1: The dimensionality reduction scheme involves a
feature selection (correlation) followed by feature extraction
(PCA).

data, as shown in Fig. 1. The first stage is a feature subset
selection, which is achieved through a correlation analysis of
the features. It is desirable to retain only those features that
have a high correlation with the intelligibility and at the same
time, are uncorrelated with other features. The correlation
coefficient based measure for feature i is obtained as :

Cori =
Ri

∑N
j=1 Ri j

, (1)

where N is the number of features in the global set before
feature selection and Ri is the correlation of the feature i with
intelligibility scores and Ri j is the correlation of feature i with
feature j. The correlation coefficient between vectors Î and I
is defined as:

R =
∑n(În −µÎ)(In −µI)√

∑n(În −µÎ)
2 ∑n(In −µI)2

, (2)

where µI and µÎ denote the mean of I and Î respectively. The
correlation coefficient based measure is optimized to select
P features with the highest correlation coefficient Cori from
the set of N global features. The second step is a feature
extraction, where PCA is used to transform the P features
into Q dimensions by a linear combination (N > P > Q). In
our experiments described later in this paper we have shown
examples for the illustrative case of P = 8 and Q = 7.

3.1.4 Gaussian Mixture Modeling

A joint GMM is trained on the Q extracted features and the
intelligibility score for each speech utterance in the training
data. The GMM was tested with a range of mixtures and the
optimal number of mixtures was found to be 7, giving the
highest correlation and lowest MSE of estimated intelligibil-
ity with subjective scores (determined experimentally).

3.2 Importance weighted signal-to-noise ratio (iSNR)
feature
The signal-to-noise ratio is a popular objective measure for
quantifying the amount of additive noise in the signal. We
use an intelligibility specific frequency weighted SNR mea-
sure to quantify effects of additive noise for each time frame
of the signal. This forms a per frame feature whose statis-
tical properties over the entire utterance is evaluated. The
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Figure 2: Illustration of the modified LCQA algorithm opti-
mized for intelligibility estimation.

noise power is estimated using the minimum statistics algo-
rithm [12] for each frame of the signal. The algorithm as-
sumed an additive noise model:

x(n) = s(n)+ v(n), (3)

where x(n) is the noisy speech, s(n) is the speech signal and
v(n) is the noise.

The SII [1] is an intrusive measure that quantifies the
aspects of the signal that are audible and usable to the lis-
tener. The SII score is monotonically related to intelligibility
and is given in the range 0 to 1. The SII describes different
Frequency Importance Functions (FIFs) based on different
speech material.The FIFs are weighting functions applied to
the signal spectrum based on the importance of the particular
frequency band to intelligibility. The general SII formula is
defined as:

SII =
N f

∑
k=1

I(k)A(k), (4)

250 500 1000 2000 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frequency(Hz)

B
an

d 
Im

po
rt

an
ce

SII Band Importance

Figure 3: 1/3rd octave band importance function used in the
SII calculation [1].

where, N f is the number of frequency bands. The band
importance function I(k), describes the importance of a
frequency band to speech intelligibility and A(k) is the band
audibility function [1].

The iSNR for frame i is defined as:

iSNR(i) = 10
N f

∑
k=1

I(k) log10
max(0,Px(i,k)− Pṽ(i,k))

Pṽ(i,k)
, (5)

where Px(i,k) is the power spectrum of the input (noisy
speech) signal, computed as follows:

Px(i,k) = X(i,k)X∗(i,k), (6)

where X(i,k) is the Discrete Fourier Transform (DFT) of the
ith frame of the input signal. The estimated noise power
Pṽ(i,k) is obtained in a similar way. It is important to es-
timate the iSNR only for those periods in which the speech
signal is active. The iSNR calculation is thus restricted to
voiced frames of the signal.

3.3 Database
The database consists of 200 sentences [13] from a male
speaker. The sentences were corrupted with dynamic sam-
ples of car and babble noise at five SNRs obtained to cor-
respond to an SII score of 0.1, 0.3, 0.5, 0.7 and 0.9. The
speech activity level was obtained through the ITU-T P.56 al-
gorithm [14] and this was used in the SNR calculation when
adding the noise. Also included in the database are the noisy
utterances processed through the spectral subtraction algo-
rithm [15, 12] available in the Voicebox toolbox [16]. The
20 conditions in the database are summarized in Table 1.

Subjective intelligibility results were obtained from 20
naı̈ve native speakers of British English. All subjects had
hearing thresholds of less than 20 dBHL at frequencies rang-
ing from 125 Hz to 8 kHz. The task was to listen to the stim-
uli and give a vocal reply which was recorded and scored.
There were 5 keywords per sentence for the subject to iden-
tify. The subjective scores were averaged over the conditions



Condition Noise SNR (dB) Suppression
1 Car -9 off
2 Car -12 off
3 Car -15 off
4 Car -18 off
5 Car -21 off
6 Babble 0 off
7 Babble -3 off
8 Babble -6 off
9 Babble -9 off
10 Babble -12 off
11 Car -9 on
12 Car -12 on
13 Car -15 on
14 Car -18 on
15 Car -21 on
16 Babble 0 on
17 Babble -3 on
18 Babble -6 on
19 Babble -9 on
20 Babble -12 on

Table 1: Database conditions, the suppression refers to pro-
cessing the noisy speech with the spectral subtraction algo-
rithm.

to give a condition averaged word intelligibility score in the
range 0 to 1. As the same speaker was used for all the utter-
ances, speaker independence has not been investigated in the
current study.

3.3.1 Training

The database was partitioned into a test set and a training set.
The speech material used in the training set was not included
in the test set. Two training schemes were employed:
• 50% cross validation – in this scheme, we partition

the database into an equal dimension test and training
set. The training set contains all the conditions that are
present in the test set. However, the test speech material
is not available in the training set. The test and training
set are swapped and the performed is the average over
the cross validated sets.

• Predicting processing effects – in this scheme, the train-
ing set only contains the noisy speech conditions and has
no example of the speech processed through spectral sub-
traction. Here we are interested in investigating the abil-
ity of the algorithm to predict the effects of speech en-
hancement on intelligibility.

4. RESULTS

We describe two experiments based on the training
schemes presented in the previous section. For the purpose
of these experiments, it has been found that selecting 8 fea-
tures from the 44 global features and 7 linear combinations
after the feature extraction give good results (N = 44, P = 8
and Q = 7). A non-linear relationship is known to exist be-
tween percentage correct intelligibility scores and SII [1].
Therefore a performance metric that accounts for this must
be used. The Spearman rank correlation coefficient [17] is

Global Feature Correlation
Skewness(spectral dynamics) 0.90
Kurtosis(spectral dynamics) 0.86
Skewness(d/dt(excitation variance)) 0.80
Skewness(d/dt(iSNR)) 0.61
Skewness(excitation variance) 0.59
Kurtosis(d/dt(excitation variance)) 0.59
Skewness(d/dt(spectral centroid)) 0.57
Kurtosis(iSNR) 0.57

Table 2: Table showing the absolute correlation coefficients
for the raw features with subjective intelligibility scores
(computed individually).

Subjective SII LCIA
Subjective 1.0

SII 0.91 1.0
LCIA 0.92 0.96 1.0

Table 3: Correlations for the 50% cross validation partitions
(all test conditions are present in training).

a non-parametric measure that describes the monotonic rela-
tionship between two variables, unlike the Pearson correla-
tion coefficient (2) which describes a linear relationship. The
Spearman correlation coefficient (ρ) is calculated as:

ρ = 1− 6∑d2
i

n(n2 −1)
, (7)

where di is the difference between the statistical rank of the
subjective and estimated intelligibility scores. The perfor-
mance of the SII is compared with our non-intrusive intelli-
gibility method, LCIA that is based on the LCQA algorithm.

4.1 Training on all conditions
In the 50% cross validation training scheme, examples of
all the 20 conditions are represented in the training and test
sets. The results from this experiment are presented in Ta-
ble 3. The LCIA results have a correlation of 0.96 with the
ANSI standard SII algorithm. This confirms that the mod-
eling within LCIA has a well defined behavior. Also, with
0.92 correlation with subjective intelligibility scores, the al-
gorithm outperforms the SII in estimating the intelligibil-
ity for additive noise and spectral subtraction, even though
LCIA is non-intrusive.

Also, the statistical properties of the spectral dynamics is
the most important feature (with a correlation of 0.90 with
intelligibility) suggesting that the rate of change of the spec-
trum provides important information in intelligibility estima-
tion.

4.2 Predicting processing
In this experiment, the training set only contains examples
of the noisy speech and no examples of the speech enhanced
through spectral subtraction. The algorithms are evaluated
for their capability in predicting the effect of spectral sub-
traction on intelligibility. The results are shown in Table 4.
For this scenario, the SII algorithm performs best, with a cor-
relation of 1.0 with subject scores. The LCIA algorithm also
has a high correlation of 0.96 with subjective scores.



Subjective SII LCIA
Subjective 1.0

SII 1.0 1.0
LCIA 0.96 0.96 1.0

Table 4: Correlations with different test/train partitions (pre-
dicting effect of algorithm).

5. CONCLUSIONS

A low complexity data driven, non-intrusive speech intel-
ligibility estimation algorithm was presented. The algorithm
computes 44 features per utterance and applies a two step di-
mensionality reduction based on correlation and PCA. This
results in 7 features, which are used to train a GMM of 7 mix-
tures. The statistical modeling of the features through skew-
ness and kurtosis were found to correlate well for speech cor-
rupted by noise and for predicting the effects of spectral sub-
traction. Also, the importance function weighted signal-to-
noise ratio was presented as an important feature.

The algorithm has a correlation of 0.96 with the intrusive
SII method and it was shown to predict the effects of pro-
cessing after spectral subtraction with a correlation of 0.96.
Finally, our approach was shown to give a correlation of 0.92
with subjective intelligibility scores.
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