TIERED SEGMENTATION OF SPEECH:
OPPORTUNITIES, METHODS, PROBLEMS AND CHALLENGES

Mark HUCKVALE

Abstract

This paper discusses the opportunities for automatic speech recognition systems
provided by a multi-dimensional phonetic representation of speech signals,
Through discussion of methods and an example implementation of tiered
1 recognition, the paper presents the outstanding challenges the technique faces for
it to match the performance of contemporary linear segmentation methods.
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1. What is tiered segmentation?

1.1  The Architectural problem in ASR

Most systems for Automatic Speech Recognition (ASR) that have been constructed
since the 1950s have not been based on the principle that speech is some kind of
direct implementation of phonology - an equivalent of morse code or DTMF" -
which simply requires decoding, but rather they have been based on the principle
that speech is an impoverished reflection of the activity of the speaker’s internal
phonological state machine. The nature and sequence of the noises a speaker
utters provides evidence for the identity of and transitions between phonological
units. This evidence, distorted because of the unique physical properties of a
particular vocal tract and acoustic environment; and variable due to the nature of
articulation and the linguistic context, does not exhibit the invariant segmented
properties of the supposed underlying phonological structure.

Thus modern ASR systems eschew principles of direct decoding - algorithmic
functions determined by a priori principles which deliver phonological information
directly from the signal. Such functions, while providing a parsimonious acoustic-
phonetic theory (i.e. they map surface sound to underlying unit with few free
parameters), have always been found to be less adequate than functions of a
convenient mathematical form with many free parameters which may be estimated
by training. This observation gives rise to the Architectural problem in ASR:

The Architectural problem in ASR is the problem of designing a
mathematical framework whereby relationships between signal and
message demonstrated by training material may be utilised for the
determination of the message of new material.*

! 'Dual-Tone Multi-Frequency, the signalling system used on push-button phones.
%For this paper we are concerned with signals and phonological representations only.
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From the earliest whole-word systems to modern tri-phone continuous speech
systems, researchers have tried to construct models of speech production, estimate
the parameters of those models from training data and then determine the most
likely inputs to such models given only the evidence of the unknown signal.
Modern systems construct the equivalent of gigantic state machines incorporating
syntactic, lexical and phonological constraints and use brute-force searching
methods to determine the most likely state sequence given an input supposedly
generated by an equivalent (human) version of the machine.

The issue that concerns us in this paper, and which is at the heart of the
architectural problem, is how to go about relating the underlying phonological
structure of a known spoken message to its acoustic form in such a way as to be
able to recover the phonological structure of an unknown message.

1.2 Linear phonetics and phonology in ASR

I have argued elsewhere (Huckvale, 1990 & 1992) that acoustic modelling can not
ignore the phonological structure of the lexicon. The information that is encoded
is intended for lexical access; the choices we need to make are between
meaningful linguistic interpretations. Thus we need to do more than (i) model
whole words, or (i) model the noises. Models of words are insufficient because
words share functional units; to model words independently is to make multiple
models of functionally equivalent units. Misrecognitions can then occur because
words will be matched as wholes rather than as an assemblage of unils;
functionally equivalent units will be in competition contributing irrelevant
penalties to the overall score. Models of noises are insufficient because
distinctiveness depends on the lexicon and not on the degree of acoustic similarity;
large changes in vowel quality may be irrelevant (e.g. *bath’ words), but small
changes in frication quality may change the word (e.g. ’three’ and ’free’). Thus
modelling the acoustics to any particular accuracy will make both too much and
too little discrimination.

Contemporary ASR systems utilise acoustic models of linear phonological
segments to drive a phonological state machine, a concept dominant since HARPY
in 1975 (Lowerre, 1980). In current systems, not only is the phonology linear, but
the utterance is recognised as a linear path through a syntax network of word
pronunciation graphs. There is only one ’level’ of interpretation: that of the word
sequence - recovered from the utterance with disregard for the speaker, the accent,
the speaker’s mood, the rhythm or intonation.

Our particular concern in this paper is at the lower levels: the relationship between
sound and phonological description. Conventionally, the sound sequence is
modelled as a sequence of 'phones’: quasi-phonological linear segments which
have variation conditioned on the immediately neighbouring phones. The phones
are chosen to at least model lexical choice, but are of a number chosen to

represent acoustic variation to a degree of fidelity allowed by the quantity of the
training material.
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To build linear phone models it is necessary to provide linearly labelled speech
signals for training: signals divided into contiguous non-overlapping regions each
with a single label. Models of each type of label are then constructed, potentially
conditioned by immediately adjacent labels. Once an initial set has been
constructed, unlabelled material can be used to further train the models on the
assumption that the initial set provides a good-enough transcription alignment.

For recognition, the task grammar and lexical pronunciations are compiled into a
directed graph, and for each utterance the single best path through the graph given
the phone models and the unknown utterance is determined by an efficient graph-
search procedure called dynamic programming.

1.3  Multi-dimensional phonetic representations

The linear phone model of speech makes a fairly direct link between the acoustic
properties of the signal and a set of linear phonological units. While a large
number of phones is commonly used (many more than are necessary for simple
phonemic distinctions), there is only weak attention given to the articulatory
structure interposing between phonology and acoustics.

Just as I have argued that acoustic modelling cannot ignore the phonological
structure of the message, equally the acoustic modelling should not ignore the
articulatory structuring of the signal. It is necessary for the modelling to be
sensitive to the acoustic variety of phonological units and this can be best
accounted for by considering the processes of articulation.

Despite the continued use of phonetic transcription, it is a view universally held
in phonetic science that articulation cannot be viewed as a sequence of discrete
gestures, where the transitions between gestures can be safely ignored. Not only
are the articulators moving in a continuous smooth motion during speech, but their
movement is asynchronous and overlapping. We often use the term coarticulation
to describe articulatory processes of anticipation and smoothing.

If we seek to describe and model articulation, we need to model articulator
movement with a non-linear or multiple-stranded phonetic description: a kind of
multi-line graph describing articulator activity, not unlike the ’articulatory
descriptions’ beloved of elementary practical phonetics teaching. Since ASR
needs to be sensitive to the acoustic variety of phonological units this implies that
the acoustic signal should be modelled according to their articulatory variety - and
hence to the multi-dimensional nature of articulator movement.

Thus contemporary ASR might model the assimilation of lip-rounding or nasality
through the use of different phone models for the normal and assimilated forms -
still a discrete segmented view of articulation. Whereas to model articulatory
variety properly requires a model of how lip-rounding or nasality affects the signal
independently of the other articulators. A multi-dimensional phonetic description
begs for a multi-dimensional acoustic model.
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14 Multi-dimensional phonological representations

While the choices that are made in the lexicon to differentiate words can be based
on linear phonological units such as phonemes, this is not to say that phonemes
play a role in the human decoding process nor that linear segmentation is the only
possible way of describing choice. When considering a single uttered syllable
such as ’bib’, it is just as adequate to talk of the syllable stariing with the segment
/b/, as it is to say that the syllable nucleus has a bilabial plosive onset. Indeed this
latter approach is superior in that (i) we know that the acoustic manifestation of
bilabial onsets depends on the following vowel and (ii) the syllable offset, while
phonemically /b/, is quite different again.

Similarly, we know that voicing encodes a number of linguistic attributes: not only
to differentiate classes of consonants, but also to convey intonation and mood.
Our linear-segmented representation is hopeless to convey intonation because voice
pitch varies (largely) independently of the segment sequence. In other words
voice pitch occupies a different ’strand’ of information about the utterance.

Such arguments combined with the need to describe phonological processes in the
world’s languages in an elegant and parsimonious way have lead to the
development of non-linear or ’auto-segmental’ phonological models. Such non-
linear models replace the segmented linear symbol string with structures in which
streams of information about the utterance are changing independently and
asynchronously with time. In one view (see Durand, 1990, p257) streams
representing intonational tones, vowel tensemess and segmental quality are
synchronised via a central consonant-vowel skeleton. Such a structure provides
a convenient mechanism for describing the domain of phonological rules which
would otherwise involve arbitrary segment re-write rules operating within a
heterogeneous set of contexts,

So while in section 1.3 I have argued for multi-dimensional phonetic and acoustic
representations in ASR, we may also note that phonologists are themselves
investigating alternatives to linear phonological representations for the description
of language.

The relationship between the three multi-dimensional representations of speech is
a complex matter which is beyond the scope of this paper. My general view of
the role phonology should play within a speech recognition architecture is outlined
in Huckvale, 1990.

1.5  Tiered Segmentation

A tiered segmentation of a speech signal is then just a multi-dimensional
annotation of the signal in which levels of labelling or types of annotation are
performed on independent strands or ’tiers’. Figure 1 shows the word ’taint’
analysed on levels describing excitation, non-obstruent quality, obstruent quality
and transitions. Each tier has an associated inventory of labels or ’elements’ and
the signal is described as consisting of a non-overlapping sequence of these
elements on each tier. Each tier is then independently associated with the acoustic
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structure of the signal via some acoustic models of the elements and a grammar
of element sequences.

This paper is concerned with acoustic-phonetic mapping and aims to contrast, both
theoretically and practically, linear from non-linear segmentation. The discussion
in section 2 centres on the potential benefits of a tiered phonetic representation to
ASR; section 3 describes the methods by which tiered segmentation might be
implemented as a recognition procedure, while section 4 gives a practical
demonstration of this. Finally sections 5 & 6 outline the remaining problems and
challenges.

2. Why is tiered segmentation useful?

2.1  Representation of acoustic, articulatory and phonological structure
If the object of speech recognition were to recover the position and motion of the
articulators from the signal, there is no doubt that we would be building a
mathematical vocal tract model .and estimating its parameters (as indeed LPC
attempts in a crude way). We would hardly attempt to describe the dynamic vocal
tract as a sequence of static articulator configurations and attempt to estimate the
sequence of those configurations by looking at their grammar. Such a view would
be incompatible with simple observations about the independence and smoothness
of articulator movement.

Since however, the object of speech recognition is to retrieve the message from
the signal, we find ourselves instcad building acoustic models of phonological
units. It is necessary for us to distinguish "three" from "free" not because they
sound very different, nor because they have different articulations, but because
they signal different messages. Simply from a knowledge of sounds or
articulations alone we can not build a system that discriminates solely between
different meanings.

The architectural problem of ASR is how best to capture the relationship between
the signal and the message: conventionally between the signal and its phonological
prescription. And although the construction of a system which ignores the
articulatory structure of speech seems perverse, this is precisely how systems
based on linear segmentation operate.

A tiered segmentation of the speech signal should be an improvement because it
recognises the importance of articulation in moulding the acoustic realisation of
phonological structures. The consequences of simple articulatory properties such
as articulator dynamics should have simple phonological description. If the tongue
does not quite meet a target, this should not mean an arbitrary segment
substitution. Similarly, small changes in articulation should be reflected in small
changes in phonological structure; the weakening of a stop to a fricative for
example is a small articulatory step. This sensitivity to articulation in the
phonology should lead to better acoustic models of phonological structures since
small articulatory steps are linked by physics to small acoustic steps.
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2.2  Representation of variability

A second aspect of the sensitivity of tiered segmentation to the articulation of
speech is that pattern recognition systems exploit consistency. Speech signals are
variable enough - due to linguistic context, environment, speaker or repetition -
without that variability being unnecessarily enhanced by inappropriate
phonological structures. An incorrect choice will lead to models having large
variance and poor discriminative power in recognition, If we start out by saying
that syllable-initial /b/ is the *same’ as syllable-final /b/ because our phonology
says so, we will end up with a poor acoustic model for /b/ which may well
overlap with other inadequately modelled segments.

Thus as well as providing a more sensitive phonological scheme, tiered
segmentation also provides a framework in which we can better model articulatory
and acoustic variability. One might hope that the effects of linguistic context may
be more contained within one tier than spread across all equally; or that some tiers
may be more robust to environmental noise, or that speaker characteristics may be
better explained by fewer parameters linked to a subset of the tiers, or that
repetitions shift only the boundaries between clements in tiers.

2.3  Sharing of acoustic information

In contrast to a linear scheme, in which each segment is modelled independently,
the division of phonological information across tiers means that information about
acoustic realisation is shared between linear segments. Modelling of the high-
frequency fricative spectrum might be shared between /s/ and /z/ for example,
because excitation is modelled on a separate tier.

One advantage of this sharing is that there are fewer parameters to train in a tiered
segmented recognition system - this means that better models are obtained for a

given size of training set.

However the most important aspect of data sharing is not the reduction in
parameters but the implicit increase in discriminative power. Separate models of
/s/ and /z/ contain two models of the high-frequency fricative spectrum - two
models trained independently and with slightly different means and variances.
However we know that slight changes in this region of the spectrum do not
differentiate /s/ from /z/ and are irrelevant to making the decision between the two
phonemes. By explicitly sharing such information in the tiered model, weight is
placed instead in the low-frequency region where a voicing decision can be
sensibly made.

24 Temporal extension of phonetic evidence _

In a linear segmentation each section of an utterance is recognised as belonging
to one part of one linear segment, even though we know that information about
segment identity is spread through the syllable. Formant transitions, for example,
provide information both about the consonant and the vowel. While this
information is recovered in part through the use of phonotactic constraints, the use
of phone-in-context models can only make use of directly adjacent segment
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influences independently modelled for each phone. A tiered representation allows
a region of the signal to contribute to the identity of more than one linear segment.
Formant transitions could aid in the identity of a vowel on one tier and to the
identity of a consonant on another,

2,5 Annotation without compromise

One final opportunity provided by tiered segmentation is an improvement to the
procedures and criteria used for annotating speech data. Currently available linear-
segmented speech databases come with documents describing the criteria that the
annotators used to divide the signal into contiguous, non-overlapping labelled
regions and the compromises that had to be made. Anyone who has experience
of annotating signals will know that the choice of symbols and positioning of
boundaries are persistent problems (see Barry & Fourcin, 1990).

3. How is tiered segmentation performed?

Given the potential for the description of speech with a tiered segmentation, we
may now ask what mathematical procedures are available for modelling and
recognising speech on this basis.

3.1 Syntactic Pattern Recognition

Pattern recognition methods can be loosely divided into two classes: those based
on the determination of the class (or category) for some unknown set of
measurements, and those based on determining the sequence of categories within
a sequence of measurements. Traditional whole-word speech recognition falls
within the first (decision-theoretic pattern recognition) as it treats words as entities,
and uses a complex distance metric (dynamic programming) to accommodate
spectral and temporal variability. The introduction of syntax constraints into such
recognition fits rather uneasily on top of the word recognition procedure - it adds
to rather than is integrated with the metric, The introduction of the Hidden
Markov Model framework changed that by using a probability-based distance
metric which could be fully integrated with probability-based syntax constraints.
This syntactic pattern recognition procedure is inherently more useful for speech
recognition where sequence constraints provide essential additional information
needed to interpret an utterance.

The issue that confronts us then, is how to make best use of the syntactic
constraints of an element sequence within a tier and, importantly, across tiers,
This issue does not arise in the linear segmental view, since the constraints that
apply are only of a single sequence: and these can be faithfully modelled by
conventional syntactic pattern recognition schemes. Let us first consider
sequences within a tier.

Compared with the sequence constraints available to linear segments, the
constraints are much weaker within a single tier. Given an excitation tier which
switches between silence, voice and frication, the six possible transitions between
these are approximately equally likely. Also we cannot establish that a given
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element sequence is impossible as easily as we might establish that a linear phone
sequence is impossible. This does not mean that syntactic constraints within a tier
are of no use, merely that we need to be mindful in establishing the inventory and
grammar for the tier that the greater the sequence constraints the greater the likely
recognition performance.

In a previous paper (Huckvale, 1992), I have described the use of two syntactic
pattern recognition strategies for tiered recognition: Hidden Markov Models
(HMM) and an augmented Multi-Layer Perceptron (MLP) technique. In the first,
each tier is described as if it were a broad-phone-class recognition problem, with
an inventory of models, a finite-state grammar and a set of transition (bigram)
probabilities. In the second, a single MLP is constructed which attempts to
categorise 30ms sections of the input signal into one of the element categories.
The output of the MLP applied to the whole word to be recognised is then parsed
by a dynamic programming procedure to determine the best element sequence that
fits the grammar, In this case, bigram probabilities are not used.

3.2 Annotation and Training

For either HMM or MLP it is necessary to provide a quantity of training material
which is used to estimate parameters; for the HMM, these are the observation
probabilities and the state transition probabilitics; for the MLP these are the
connection weights. The training material consists of annotated processed speech
which demonstrates the association between typically observed speech signals and
an a priori phonological labelling.

In the conventional linear phone case, the phonological labelling merely identifies
the speech signal as consisting of a sequence of non-overlapping contiguous
regions each with a single segment name. The inappropriateness of this merely
emphasises the ideas behind this paper. Such is the ubiquity of linear methods in
ASR that all speech databases available for recognition research are labelled in this
way.

For the tiered scheme, we require multiple levels of annotation in which element
labels are attached to contiguous, non-overlapping regions within a tier, but where
element boundaries do not necessarily align across tiers. We immediately run into
problems about how we might obtain a useful quantity of speech labelled in this
way since we are multiplying the annotation effort required. In the short term, the
only solution is to estimate tiered annotations from linearly annotated material
despite the implicit limitations and contradictions in doing so. Fortunately,
training methods of HMMs mitigate some of these problems.

To train HMMs on a tiered segmented word, it is satisfactory to train each tier
independently. Firstly, all sections of signal annotated with a given element label
are extracted and used to train a model of the element (standard HMM parameter
estimation). Secondly, each tier in each word is considered in turn and a model
sequence is established based only on the element sequence within the tier. This
sequence of models is then re-éstimated from the entire signal for the word
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(embedded HMM re-estimation).

The benefit of embedded re-estimation is that at this second stage of training, the
only the label sequence is used, rather than exact annotation positions. The
problem of embedded estimation is that it becomes necessary to construct HMMs
which explain every part of the signal on each tier. Thus while it would have
been beneficial to use the vowel quality models to analyse fricatives (e.g., //), or
fricative models to analyse vowels, the use of embedded estimation - necessary
because of the compromised annotation - means that we must use separate models
to represent the non-vowel portions during training of the tier. These ’padding’
models will always be of poor quality because they cover such a wide range of
segments, and they may have a significant effect on the recognition performance
within the tier as a whole.

For the MLP technique, training only consists of identifying 30ms sections of
signal as belonging to one of the element classes within the tier. In contrast to the
HMM technique, the MLP constructs a procedure for discriminating between
elements, rather than a procedure for choosing the most likely, The MLP is a
single model of all the elements in the tier; it has one output for each element
class. During training it must modify its internal structure to differentiate between
elements.

Thus the benefit of the MLP is in its discriminative power and its ability to label
30ms sections of the signal with the correct label. The problem of the MLP is
that its outputs do not directly correspond to probabilities, so that it is difficult to
establish from the table of outputs for an entire input word which element
sequence is most likely given also the grammar for the tier and element transition
probabilities.

We can test tiered recognition methods on two levels: whether the elements and
element sequences within the tiers match the annotated reference and whether the
system recognises the utierance as a whole. The methods for syntactic pattern
recognition described above only provide independent estimates for the contents
of each tier. Thus we can certainly recognise and compare performance within
tiers. However we have not yet described procedures for utterance recognition by
combining information across tiers. We describe the problems of doing so in
Section 5.2.

3.3  Performance Measures

Tiered segmentation also provides challenges for measures of recognition
performance. Because, as yet, there are problems of building effective sentence
or word recognition systems based on tiered segmentation, measures such as
’phoneme’ accuracy have to be adapted to- compare conventional linear
segmentation recognition performance with tiered segmentation,

The conventional measure of linear performance is *accuracy’ which is calculated
from two label sequences by subtracting the percentage insertion rate from the
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percentage correct rate. To do this requires that the two label sequences are
aligned to minimise the number of insertions, deletions and substitutions required
to transform the recognised sequence to the correct sequence. If the number of
labels in the correct sequence is N, the number of correctly recognised labels (after
alignment) is C, and the number of recognised labels that have no reference
counterpart is I, then the accuracy is 100*(C-I)/N.

We can use accuracy within a tier to give a performance measure for that tier
alone, but we are immediately faced with the possibility that a recogniser could
have extremely high performance on each tier, but still provide a poor recognition
of the phonological structure because the alignment between tiers may be highly
variable from one repetition of a word to the next. We require our recognition
system to provide a suitable phonetic description overall not on each tier
independently.

An alternative measure is to compare the recognised labels with the reference
annotations not only in terms of element name but also in terms of element
position. A crude measure is *frame-labelling’ performance, which indicates the
percentage of 10ms signal frames which are labelled correctly. This provides a
measure which is sensitive to label alignment, but at the penalty of giving undue
emphasis to long segments. '

Interestingly, the HMM system is better designed to provide a recognised label
sequence than a set of frame labels, while for the MLP the situation is reversed.

When comparing tiered recognition against linear methods, we can always ’map’
down linear results into tiers so that comparisons may be made. The inherent
danger of this is that the reference annotations have also been mapped down - so
that the linear system has an in-built advantage in terms of cross-tier alignments.

A third performance measure can be found by determining, for each tier, how
many utterances were labelled correctly; i.e. with the correct sequence of element
labels. We can predict that a system which obtains high ’phrase labelling’
performance for each tier will have a high phrase recognition performance for the
utterances, since utierances always differ by the element sequences taken over all
tiers.

Finally, when comparing different tiered recognition methods any performance
comparisons within tiers may be useful, but for comparison with conventional
linear recognition methods only word recognition performance is going to be an
acceptable measure.
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4, Does tiered segmentation work?

From this rather abstract discussion of the nature of tiered segmentation and
methods for its implementation, we now turn to a concrete example of tiered
recognition. This is a first implementation of the ideas, which has been useful in
demonstrating the outstanding challenges facing tiered segmentation. A more
complete description may be found in Huckvale (1992).

41 Example database

The MONOS database is designed to explore the phonetic variety of isolated
monosyllabic English words. The particular vocabulary used in this experiment
looks at a large subset of permissable English initial consonant clusters, a large
subset of permissable English final consonant clusters and a large subset of
permissable nuclear vowels.

The 46 initial consonant clusters chosen were®;
NULL,b,d, g, p,t,k,m,n, L1, w,j,dZ,tS, 1§, s, S,
T, v, z, D, h, b, br, dr, gl, gr, pl, pr, tr, tw, ki, kr,
kw, fr, fl, sp, st, sk, sl, sm, sn, sw, Sr, Tr.

The 15 vowels chosen were:
i, Le {,V,A, 0, Qu,3, 4l el, O @U, aU.

The 48 final consonant clusters chosen were:
NULL, b, d, g, p,t, k, m,n, N, |, tS, dZ, f, s, S, T,
v, z, bz, dz, gz, ps, ts, ks, mz, mp, nz, ns, nt, nT,
ntS, ndZ, Nz, Nk, If, Iz, Ip, 1t, Ik, fs, sp, st, sk, vz,
ft, 1d, ns.

667 English words were then found which exercised most legal possibilities of
each initial cluster followed by each vowel, and separately each final consonant
cluster preceded by each vowel. This became the training sef. A further 359
English words (not present in the training set) were then found which re-covered
approximately 50% of the consonant-cluster/vowel combinations in the training
set. This became the test set. The word lists are available from the author.

Recordings were made of a single male speaker with a close-talking microphone
in an office environment. Automatic end-pointing based on energy criteria was
used to isolate each word; items that were too quiet (used fewer than 11-bits of
the ADC) or overloaded (used more than 12-bits of the ADC) were automatically
rejected. Each recorded signal was also quickly inspected at the time of recording
and a minority of utterances (less than 10%) were rejected and re-recorded.

*Transcriptions are printed in SAMPA notation,

The signals were annotated using an inventory of 117 sub-phonemic labels. The
inventory was chosen to (i) identify important acoustic changes in the signal, (ji)
label phonological distinctions, -(iii) separate potential contextual variants of
phonological units. So stops were divided into burst, gap and vowel-transition
regions; fricatives /T-/ and /f-/ were given separate labels; /r/ was labelled
differently after /t/ than as a separate syllable onset. The annotation of the words
was performed by an automatic dynamic-programming (DP) alignment between
the signal and a concatenated sequence of spectra for each annotation label taken
from a hand-generated dictionary.

We report on results obtained from a vocoder-based feature vector comprising 19
filterbank energies relative to the overall energy and the overall energy value itself
(based on the filters used in the JSRU vocoder, Holmes 1980). The frame rate
was 100s™. The recordings and annotations are available from the author.

4.2 Example tiers
The EXCITATION tier divided the words into three classes of region:

NOE No excitation
FRC Mainly fricated (aperiodic) excitation
VOl Mainly voiced (periodic) excitation

Voiced fricative regions were allocated to the FRC class.

The NON-OBSTRUENT tier attempts to label the primarily voiced, non-
obstruents: those that could be expected to show a clear steady-state formant
structure.

NOE No excitation FRC Mainly fricated

excitation
VI  Front, close vowels and /j/ VE  Front, half-open vowels
VH  Front, open vowels VU Back, close vowels
and /w/

VO  Back, half-open vowels VA  Back, open vowels
VR  Central vowels and /t/ VL  Alveolar lateral
VN  Nasals VC  Voiced obstruents

The OBSTRUENT tier attempts to differentiate obstruents, primarily fricatives,
bursts and nasals. The elements are:

SIL  Silence . VOC Non-obstruent voicing
FP Bilabial frication FF Labial frication

FS Alveolar frication FSH Palatal frication

FX  Velar frication FH  Glottal frication

NM Labial nasal _ NN  Alveolar nasal

NX  Velar nasal




T

The TRANSITIONS tier attempts to differentiate between different types of
spectral transition in the signal:

SIL  Silence STOF Silence to Frication
STOV Silence to Voicing FRC Frication

FTOS Frication to Silence FTOV Frication to Voicing
LABT Labial opening ALVT Alveolar opening
VELT Velar opening TLAB Labial closing
TALV Alveolar closing TVEL Velar closing

BUR Stop burst APP  Approximant

DIP Diphthong

To generate annotated regions for these transition labels, the 117 monophone
labels were first mapped to a set of broad classes and then 40ms transition regions
were labelled at each broad class junction. All resulting regions were then
mapped to one of the classes above.

The models were used for recognition by first performing a forward pass over
each isolated test word to generate a vector of output values for each input frame.
A DP procedure then generated a legal element sequence for the tier, constrained
by a simple syntactic network as used for the HMM models. The distance
measure chosen between an element e on the network and the MLP output o(e,t)
at time t was simply:

de)= Y oGin),ire

Y oG9
44  Results
We start by establishing a base system, comprising HMMs of linear phones, one
model for each annotation label used for the vocabulary. These have the same
structure as the element models and are trained in a similar fashion. For

recognition, we use a syntax based on the design of the MONOS database,
allowing any initial consonant cluster to precede any vowel, and any final
consonant cluster to follow any vowel. By mapping down the recognised
sequences into tier labels, we are able to obtain performance measures which are
comparable to the tiered recognition procedure.

43  Method

Hidden Markov Models were trained and tested using the Cambridge HTK
software vs. 1.2 developed by Steve Young. All element models had three
emitting states with single Gaussian mixtures, diagonal covariance and self+next
transitions only. The models in each tier were first independently initialised and

. . . o e now present, for each tier in turn, three performance measures: (i) element
re-estimated and then fine-tuned with 5 cycles of embedded re-estimation. w P pe

label accuracy, (ii) frame labelling percentage correct, (iii) phrase label percentage
correct. We show baseline results, then results for the HMM and the MLP
systems.

For recognition, each tier was allocated a syntactic network which specified legal
sequences of elements within each isolated word. The design of the network was
not based on the specific training and testing vocabulary, but on the broader
design goals of the MONOS database subset, that of 46 initial consonant-clusters EXCITATION Label Frames Phrases

x 15 vowels x 48 final consonant clusters. The only compromise to this very Accuracy% Correct% Correct%
general position was to prevent short vowels occurring in open syllables. Bigram

probabilities were collected for each tier from the entire 1026 (667+359) word Baseline 96.5 91.9 853
vocabulary. HMM 86.1 90.1 50.4
Multi-Layer Perceptron models were trained and tested using the Pattern MLP 88.8 92.6 527

Recognition Workbench (PRW) tools developed at UCL. All models take three
adjacent input vectors (3x20 values), have a single hidden layer and an output
layer of a size determined by the number of elements in the tier. The number of
units in the hidden layer was chosen to be twice the number of units in the output NON-OBSTRUENT Label Frames Phrases

layer. By this means, the total number of weights in the model approximated the Accuracy% Cormrect% Correct%
total number of parameters in the parallel collection of Markov models for the tier. -

For each input vector triplet the training vector consisted of a value of 0.9 for the ! Baseline 92.8 87.8 63.8
labelled element output and 0.1 for the others. HMM 81.3 84.6 26.5
The models were trained using an adaptive back-propagation technique with MLP 75.6 86.6 15.3

weight updates every 50 vectors presented. Models were trained for 20 complete
passes over the training data, by which time the residual squared error change per
cycle was always very small,
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constrained to have boundaries that align across tiers. An annotation
OBSTRUENT Acgfr:(::l % CP(‘)[rT;;ZG CPhrasc:; scheme which did not force alignment across tiers would, in contrast, put
Y orrec the linear system at a disadvantage.
Baseline 91.9 89.8 64.9 o . .
3. Apart from the excitation tier, all the tiered HMM recognition models use
HMM 79.8 86.1 29.3 >padding’ models: HMMs which are used to fill-in regions of the word for
which the tier offers no explanation (the VC element in the non-obstruent
MLP 750 856 16.4 tier for example). In fact we would prefer not to include this model at all
in recognition; but as yet we have no mechanism for performing
recognition without it (what would the grammar for the tier look like?) and
TRANSITION Label Frames Phrases no performance measure that is set up to ignore the padding labels.
A %
couracy” Correct% Cormrect% 5. Can tiered segmentation deliver?
Baseline 89.0 83.2 39.6
From this diversion into the practicalities of performing tiered segmentation, we
HMM 66.3 68.6 33 can now describe the challenges ahead.
MLP 72.9 82.6 5.3 . '
5.1  The design of tiers

We can see that the design of the tier structure is influenced by many variables:
(i) the phonological model, (ii) the ability to annotate, (iii) the need for strong
sequential constraints (both grammatically and probabilistically), (iv) the avoidance
of padding elements.

Thus for all but one of the tiers, the best performance regardless of performance
measure is obtained by linear phone labelling followed by mapping of those phone
labels into element sequences.

4.5 Discussion

There are a number of points that should be made about these results: The tier structure in section 4 has a number of weaknesses: it divides the tiers

unnecessarily between vowels and consonants; information is repeated across tiers
(all vowel elements in the non-obstruent tier have a corresponding VOI element
in the excitation tier); transitional information is banished to an independent tier.
The removal of the duplication in the models across tiers should have two
benefits: improved discrimination and more tier independence; both leading to a
better model of phonetic variability within phonological constraints.

1. The performance of the baseline system is strongly dependent on the use
of the bigram probabilities obtained from the train and test vocabulary. To
emphasise this the EXCITATION tier results without bigrams looks like:

EXCITATION Label Frames Phrases . . . s .
Accuracy% Correct% Correct% A linear annotation which must be mapped down to give tier labels provides an
awkward basis from which to train tier models. Each transitional element in the
Baseline (no bigram) 58.9 86.6 1.1 transition tier in Section 4, for example, was forced to be 40ms long so that it
. could be predicted automatically from the boundary between linear annotation
HMM (no bigram) 6L.9 87.0 42 labels. Not only is this a poor approximation to labelling, it also gives the linear
MLP 88.8 92.6 52.7 results a huge advantage when the recognised label boundaries are also mapped
down to 40ms duration. The choice of elements must also then be influenced by

Without the use of the bigram probabilities, the baseline error rate degrades
12-fold. The HMM tiered recognition degrades 3-fold, and the MLP
system (which does not use bigram data) is unaffected.

2. As mentioned in 3.3, the ’'mapping down’ of the baseline linear
segmentation results into tiers gives an inbuilt performance advantage when
the tier labels have themselves been generated from linear annotations.
Both the reference tier labelling and the mapped down linear labelling are
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what annotation scheme is available for the training material,

The most important outcome of the experimental results from Section 4 is the
demonstration of the influence of sequential constraints in improving recognition
performance. The baseline linear system, having a larger inventory of recognition
units exploits constraints on unit sequences provided by the 1000 word vocabulary
much more effectively than can the tiered system with a small inventory of
element units within each tier. To make more effective use of sequential
constraints in the tiered system, we need to choose a larger inventory with non
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equal transitional probabilities. However, it is also worth noting that as the
existing system moves to a larger vocabulary or to connected utterances, the
sequential constraints will weaken for the linear system. The hope is therefore,
that the combination of an improved tier inventory and a more difficult recognition
task will lead to a convergence in performance.

Finally the use of padding elements in the tiers is to be avoided. This might be
done by simply using a different inventory of symbols for training as against
recognition. The padding models (models of a variety of segments not explicitly
described by the tier) would only be necessary to allow embedded re-estimation
of HMM tier models; but would then be discarded. At recognition time the
grammar and transition probabilities would need to take into account the ’true’
inventory for the tier, and the performance measures adjusted to only consider the
relevant sections of the recognised label sequence. Since the foregoing seems
rather complex, it may still be better to design the tier structure to give complete
coverage within each tier - this may be required anyway to give good sequential
constraints.

52  Word matching strategies
The second major challenge for tiered segmentation is the step to word
recognition,

The simplest approach is to view the phonetic recognition and the lexical choice
as independent steps. Thus in the experiment in section 4, we could take either
the linear transcription from the baseline system, or the transcriptions from the
four tiers to match against phonologically-predicted entries for the words in the
test vocabulary. This matching is based on a metric which returns the distance
between the recognised transcription and the predicted transcription, so that the
closest word may be chosen.

We have implemented an extremely simple version of this idea, by using a
dynamic programming metric which matches each tier transcription in turn to a
vocabulary word, with penalties for the insertion and deletion of elements and for
temporal distortion, and sums the distances across tiers. This gives a truly
abysmal word recognition performance. For comparison the table below also
includes the mapped down baseline results used for recognition with the same
procedure:

System Words Correct%
Baseline (mapped) 61
HMM 37
MLP 26
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A major problem is that the division between phonetic recognition and lexical
choice ignores the very strong constraints provided by the limited vocabulary that
could and should be applied-at the lowest level. Thus, we need a single
recognition procedure that delivers the word identity at the same time as delivering
a transcription. For word recognition, we must use information about the specific
phonological structure of the test vocabulary in the phonetic recognition process.

This may be readily demonstrated for the baseline system by substituting the
recognition grammar (that normally allows any combination of initial consonant
cluster, nuclear vowel and final consonant cluster) with a grammar composed only
of the transcriptions of the test vocabulary. Since each legal transcription is now
a test word, we can recover word recognition results directly. The baseline system
constrained in this way delivers a word recognition rate of 96%!

Thus what is required is to construct a similar scheme for the tiered recognition
case. However, the multi-dimensional nature of the transcription makes this tricky
to achieve. Whereas the parsing of a linear transcription involves finding the best
path through a directed graph, the parsing of an N-dimensional transcription
involves finding N paths through N graphs (where timing comrespondences are
forced across graphs) such that the combination of paths is *best’. A solution to
this is still awaited.

Another issue of word recognition, largely ignored in the linear case, but important
in the tiered case is the modelling of phonetic variation within a word. In the
linear case, phonetic variation has been modelled by constructing alternative
transcriptions for words and including these in the vocabulary: thus "and” may
have transcriptions /and/ and /an/, or even /n/. Notice that pronunciation variety
is limited to phonological unit variation. In the tiered case, we expect the
alignment between elements across the tiers to vary as articulation varies: we also
expect some elements to be substituted or deleted according to contextual, speaker
or environmental variation. This type of variation needs to be modelled at a finer
level of detail than in the linear case: with analysis needed of the typical durations
and boundary variability for each element in a number of contexts. We would
expect that this knowledge would also contribute to the distance metric in a multi-
dimensional parsing for word recognition.

6. What is the future for tiered segmentation?

In this paper we have tried to show the challenges facing tiered segmentation as
well as the opportunities. In Section 2, we have described the potential for
modelling the phonetic structure of speech signals with a multi-dimensional
phonetic transcription. In Section 3, we have described some of the methods
available to perform speech recognition based on a tiered segmentation, while
Section 4 demonstrates some of these ideas in practice. In Section 5, we have
outlined the major problems facing the technique. Finally, we shall consider
where effort needs to be concentrated.
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In terms of choosing the inventory of tiers and elements, it is imperative to exploit
sequential constraints within tiers to maximise the performance of syntactic pattern
recognition procedures. In addition it will be beneficial to ensure that the
elements in each tier cover the entire signal in a useful way - that no elements are
just padding. It is believed that tiers that distribute information uniquely across
tiers will have better performance, so that duplication of information across tiers

dependency) is best avoided.
e ? THE IDENTIFICATION OF /I/ AND /r/ BY JAPANESE EARLY,

In terms of lexical access, it is essential to develop parsing methods that combine INTERMEDIATE AND LATE BILINGUALS

tier segmentation with lexical access: this means that vocabulary limitations can
be used to constrain phonetic transcription. Bigram and other statistical measures
have been shown to be useful for the HMM systems and should be incorporated
into the MLP based system.

Junko NAKAUCHI

Methods of annotation also need to be re-considered, as the linear scheme of
annotation works against tiered segmentation and actively weakens tiered
recognition performance in comparison with linear recognition methods.
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