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Abstract

Starting from the definition of the impulse response of the GammaTone filter,
its complex spectrum, power spectrum, phase spectrum, the equivalent rect-
angular bandwidth, and the 3dB bandwidth are derived. A digital IIR filter is
designed using the impulse invariance method to implement the GammaTone
filter digitaily through a maultiple pass technique, and the approximations in-
volved in the IIR filter implementation are clarified. Although most of these
results have been published elsewhere, they are derived here in considerable
detail as a tutorial.

1 Introduction

It is generally accepted that the frequency analysis performed by the periph-
eral auditory system can be modelled to a reasonable degree of accuracy by a
bank of linear bandpass filters. Various filters, e.g. the family of roex filters
{Patterson and Moore 1986), have been investigated for this purpose. A tech-
nique known as ‘reverse correlation’ (de Boer and Kuyper 1968), in which the
responses of a primary anditory nerve fiber to white noise stimuli are measured
and correlated with the input, is 2 method for measuring the auditory filter
shape fairly directly from physiclogical preparations. This procedure gives
rise to the so-called ‘revcor’ funciion, which within limits can be considered to
be an estimate of the impulse response of the peripheral auditory filter that
precedes the spike generation mechanism of that fiber. The GammaTone Fil-
ter {(GTF) is an apalytic mathematical function that approximates measured
revcor functions (Johannesma 1972). The GTF has a convenient mathemati-
cal form that allows various filter properties to be derived analytically, As the
GTF is derived from measured impulse responses, it has complete amplitude
and phase information, not just amplitude information as in the case of filters
derived from psychoacoustical masking experiments, such as the roex filter.

Holdsworth et al. (Holdsworth et al. 1988) stated various properties of the
GTF and presented a digital multiple pass 1IR filter scheme for its implemen-
tation. This techaique enables GTF filter banks to be implemented much more
efficiently than an FIR filter equivalent, and thus has important implications
for practical applications (Patterson et al. 1988).

We are interested in using a GammaTone filter bank as the frequency anal-
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ysis component in a computer model of speech perception. The purpose of this
note is to derive the results of Holdsworth et al. (Holdsworth et al. 1988) as
a tutorial, and to clarify some of the approximations involved, Emphasis is on
the mathematical derivation of the GTF properties and the [IR filter design,
rather than analysis of the filter parameters. To make this note reasonably self
contained, standard Fourier Transform results used are listed in Appendix A,

2 The complex spectrum of the GammaTone filter

The impulse response of the GammaTone filter is defined as

WD) = { g’tm exp(~2mbt) cos(2n fot + §), ltt :g (2.1}

The GTF derives its name from the observation that h{(t} is in the form of
a carrier wave (tone) cos(2r fot + 4) amplitude modulated with an envelope
that is proportional to #*~ exp(—2xbt}, which is the same functional form as
the Gamma distribution in statistics. These two components gave rise to the
pame ‘GammaTone’. The GTF parameters are: '

c - proportionality constant
n - the filter order

{controls the relative shape of the envelope, which
becomes less skewed as n is increased [for fixed b )

b - temporal decay coefficient (b > 0)

(increasing b shortens the duration of h(t))
fo (in Hz) - frequency of the carrier wave

{determines the center frequency of the fitter)
# (inradians) - carrier phase

(determines the relative position of the envelope
to the fine structure in the carrier wave)

The frequency response of the GTF is now derived to see what the éorrespond—
ing effects of the GTF parameters are in the frequency domain,

For ease of mathematical manipulation, it is convenient to rewsite {2.1)

as
h(t) = er(t) s(d), - <tigx {2.22)
where
s(t) = cos{2n fot + §) (2.2b)
(8) = *7 exp(—2rbt) u(t) (2.2c)

and u{t) is the step function {see (A.8) in Appendix A}~ The introduction of
u(t) allows some standard Fourier Transform (FT} resuits to be applied (see
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i : i i ly taken to be zero, it is included in
Appendix A). (Note: While ¢ is usua y .
thi?a.najysis )iaes'e for completeness, It will be seen that for practical Caé?;;f
interest, ¢ makes a negligible contribution to the power spectrum of the D

The frequency response of the GTF is obtained by taking the FT of h(t),
ie.

H(f = /w hit) exp(—i2n ftydt = ¢ fw r{t) s(t) exp(—i2x ft) dt  (2.3)
Using the convolution theorem (see Appendix A}, it follows from (2.3) that
| H(f) = c[R(f) ® S(F)] | 24)

where ® denotes the convolution operator and upper and lower case lit;erz
denote FT pairs. From (2.2¢) and (A.13), substituting m =n—1 and a = 27

B(f) = (n~ 1) 2rb a2 f]™ = (n — DI@eb) " L+ /8" {25)

(Note: Since b > 0, condition a > 0 in (A.6) is satisfied.) From {2.2b} and
(A.10)

SU) = 3 {explid)6(f — o) +eap(—i) O+ F)) (29)

Using the sifting property of the delta function {see Appendix A}, it follows
from {2.4-6) that

H{f) = c[B(f)® S(S)]
= Z(n=1)(2mt)™ {eaplig) [L+i(f = fo)/8]"
+eap(—id) [1+3(f + fo) /I } @7
Thus H{f) is of the form '
H(f) = kIP(f) + P*(~f)] (2.8a)
where P(f) == exp{ig) [1 +i(f — fo)/0]7" (2.8b)
- [ g{n — 1)l(2xb)~ (2.8¢)

i EP(f} and kP*(~f),
i.e. H(f) consists of the sum of the two components
1v€1!1ich gﬁ, formed by centesing the functions Bi(f} and By(f) at foHz and
— foHz respectively, where

B

R(f)exp(id) } (2.9}
Bs

ER(Pesnl-id)

']
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Since the power spectrum of E(f) has its maximum at f =0, the power
spectra of the individual components kP{ £} and kP*(~F) of H(f} have their
maximum at foHz and — f,Hz respectively. As will be seen later however,
this does not necessarily imply for the general case that the maximum of the
power spectrum of H(f) occurs at +fuHz.

Note: If x{t) is real, its FT must be Hermitian, ie. X(—f) = X,
where ” denotes complex conjugate. It can easily be verified that R, SN
and H{f} are all Hermitian as expected.

% The power spectrum and phase spectrum of the Gam-
ma'fone filter

i the previous section, the complex spectrum H(f)} =" [H{ FHezplip( £)) of
the CTF was derived. |#{f)} and ¥(f) are the amplitude spectrum and phase
spectrum respectively. In this section the power spectrum [H{f}? and the
Phase spectrum of the GTF are derived from the complex spectrur.

The power spectrum:
The power spectrum LH(f)[* = H(f)H*(f} of the GTF is given by

HINE = BP() + P~ IYP*(f) + P(~F)]
RUPOE + P~ 1) + PUP(~f) + PHAPY(=1)]
HIPNE +IP(=)F + 2R{P(/}P(~f)}] (8.3)

where k and P(f) are as defined in (2.8) and R{X} denotes the real part of
X. P(f) can be expressed as

P(f} = eap(ig)[ Q)™ = | exp[~inty(£)lezp(id) (3.2a)

where

It

QA =[+if~fo}ft]  and  6(f) = ARGI(f —- fo)/8] (3.2b)
ARGy/z] denotes the prinei pal phase value of the complex variable z with real

and imaginary parts pa and My respectively, where u is an arbitrary scaling
factor. Hence from (3.2) ¥

P(=f) = exp(id) | Q(~ )] ™ = Q=) ep(—~inbe(f)]eap(is)  (3.3a)

where

QI-N)=[L~if+ /)8l and  6,(f) = ARGI-(f + fo)/8) (3.3b)
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From (3.2-3}

PP QU™ = [L+(f - fo* /5] (3.4a)
EFI‘("EJBII’ = REA =1L+ + AP/ (3.4b)

It

QAN eer(i2¢) |
(e L~ U1+ /O ap(20)
= [L+4(f*— A0 —i2fo/B] "exp(i2¢) { 3.4c)

P(f}P(~f)

i

i

Pl—
R{P(S) (i(}fl} (FF = B (gfolb)ﬁ-’]"“/zcos[2¢ -n8(f)] (3.4d)

where
) ~2fsh a4
= ARG{bu FTi b ) = ARG{&? TP-R JES
From (3.1-4) |
HOP = QU™ +1Q(-HI" +
o 2R{[Q(NQ(—H] "exp(i24)} } { 3.52)
= B{[14( - LA+ 1+ (f+ )P +
{?Eﬁ{ll(+ (f”u— F2 /8 —i2fo /b "eap(i24)}}  ( 8.5b)
= B0+~ LRI+ (4 PP+
201+ (f* — FRYB)? + (2fo/0)*) P cos(2¢ — nb(f)}} ( 3.5¢)
where

k

It

%(n — 1Homb)y

6(f) = ARG {Eﬁ%ﬁ}

as defined above.

As can be seen from (3.5), the smaller b, the more raLpadf t;;e g;f:;{ ;j
|H(f){* away from = f5, which corresponds to a slower decay o : e;: PUf) o
ulse response. The larger the ratio fo/b, the ielss t.}lxe components e
ZP‘(— ) of H{f) overlap, and the less the contribution of £P(f) an )
to JH(f)P® away from fy and — fy respectively. Although the gox::er Tpegfa; ;e
EP(f) and kP"(—f) have their maximum at fo and —fo ro}alspec ive Sy, for the
general case with no resirictions on t}ze‘GTF parameters, the f;wei ;r? cbram
of H(f) does not necessarily have maxima at +foHz. When the comp
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EP(f) and kP"(—f) overlap significantly, |H{f)|® has the character of 2 low-
pass filter with a single peak at the origin. As fo/b.is increased {for fixed n),
this single peak splits and the maxima move sutwards and eventually converge
on = fo. Since the purpose of the GTF in auditory modelling is to model 2
bandpass filter, the components EP(f) and P*(~f) must be well separated,
and this in turn requires that the ratio fo/bis large. When fo/bis large enough,
H{f} can be approximated as

~ ) RE(S 20

and
IH(OHE = B L+ (if - fo)? /65 (3.7

1t is seen that the full form of the power spectrum, but not the approximate
form, contains 4. For small f, /b, ¢ infiuences where the maxima of the power
spectrum occur, but has negligible effect for farge fo/b.

Initial estimates show that the approximation is probably quite acceptable
for fo/b > 2 when n = 4 (a typical value for n in auditory modelling). In
general, for fixed fo/b, the larger n, the better the approximation. According
to Holdsworth et. al. (1988), when modelling the human auditory system,
fafb is typically in the range 4 < fo/b < 8. Hence for auditory modelling, this
approximation appears to be appropriate.

The phase spectrum:

The phase spectrum of the GTF is given by

- S{H()}
0= 476 (S8 63)

where R{X} and ${X} denote the real and imaginary part of X respectively.
Irom (3.2-3)

RP(N; = QU™ cosld —nby(f))

PN} = QA" sinlg—noy() a0
RIL()} = Q=A™ cos|—{¢— nba(£)}] (3.9)
HP (-1} = Q=A™ sini~{d—nos(f)]]

Expanding (3.9} using (3.4}, then from (2.5} and (3.8) the phase spectrum can

be expressed as o

e (SPUN 4 SIP (=}
v(f) = ARG (%{P(f)} TR ) = ARG (3102)
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where

ﬁ._

1ﬂ+ £ — Fol B sin(d — nb(H)] — [1 + (f + fo)* /8] 2sin(d — na(f))
i[1 + ((f — Jolt [T Facoslg — nb ()] + (1 + (f + fo) /6] /2cos[é — nba(f)]

(3.10b)

fusing sin(—z) = —sin(z) and cos(—x) = cos(z}]. It is noted that (0} = 0
and p(—f) = ~p(f), as expected, due to the Hermitian property of H{f).

As for the power spectrum, the expression for the phase spectram can be
simplified when the ratio fo/b is large. In this case for f > 0, the terms in A2
containing f+ fo become negligible when f is in the region of fo or larger, and

®{ f} reduces to
sinfd =B\ _ e aperc oy
P(f) = ARG (W) = ¢~ nby(f) = ¢ — n ARG[(f f(l/.’l]la}

Similarly, for f < 0, the terms in § containing f— fo become negligible when
f is in the region of —f; or smaller, and $(f) reduces to

P(f) w8 ~[p — nbo{f} = ~(¢ — 0 ARG[(~(f -+ fo)/B)]) (3.11b)
Thus when fo/b is large enough,

4 —n ARGI(f| - )/ £>0 .
s~ { %, T aRan— i £ o

Although for the approximate phase spectram ${—f) = —3( f),"m general
#{0) # 0. Even for large fo/b, the approximate phase spectrum is not nec-
essarily a good approximation to the true phase spectm}m n.ear'the origin.
However, regions near the origin where the phase a,_ppro::urvna.txon is not good
corresponds to regions where the power spectrum is negligible.

It is seen that both the full and approximate phase spectrum contain 4,
whereas it only features in the full, but not the approximate, power spectrum.

4 'The equivalent rectangular bandwidth and 3dB band-
width of the GammaTone filter

In addition to the power spectrum, two filter parameters that are c.)f interest are
the equivalent rectangular bandwith (ERB) and the 3dB bandwidth BWaes.
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The equivalent rectangular bandwidth of the GTH:

The equivalent rectangular bandwidth (ERB) of a filter X{fY is typi-
cally defined as the width of a rectangular filter whase height equals the
maximum of the power spectrum of X (f) and passes the same amount of
power as X{(f). The concept of the ERB is illustrated in Fig. 4.1 for a
bypothetical bandpass filter with well separated bands and power spectrum
maxima at +f;. A slightly more general definition of the ERE allows the
height of the rectangular filter to be merely predefined at some fixed level.
The ERB for the general GTF where the height of the rectanguiar filter is
{H(fo)i* can be caleulated as follows, making no assumptions at present as
to whether this actually is the maximum of the power spectrum of H{f).

[H(f}
Herp Hyng
| N f
—fo fo

Tig. 4.1

The area of each rectangular box in Fig. 4.1 is Henp|H(f)[?, which is
equal to half of the power passed by the GTF. Since the power passed by
the GTF is the integral of the GTF power spectrum; the relationship between
Hygpp and [H(f)]? is

SHenslHU)P = f TP S7E)

2 [“ineras
{since |H{f)? is symmetric)

il

Applying Parseval’s theorem and the ‘Summation’ property of the FT (see
Appendix A) to (4.1}, ol

I L0 N e 1O T

T ARG T R EGE T AT (4.22)
where
h(t) = [R() (4.2b)
From (2.2)
o k(1) = 2 R(1)3(2) (4.33)
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#1) = £ Pexp(—4mbtJult) {4.3b)
3{t) = cos® (27 fot + &) {4.3¢c)

(Note that u(f)® = u(t).}) Thus
H(f) = SR & S(F)] (44)

Applying (A.13} to (4.3b)

. 9n — 2 (4xb + 12 f)" D
M= gz:.-z)!(m)-‘”"“’ (1 if 25y D “3)

i

and applying (A.9) and the convolution theorem to (4.3c)
30) = [ -+ 22 A ss 1] 0
(60 5 - g+ 2 4 1)

- iy, 2fe) + 55 4 0 4 360 49)

as can be verified using (A.3). From (4.4-6)

iy = QBN BN . .

= A(2n — ! (4rb)- {iﬁﬁ{gf‘ﬂiz +i(f — 2fa) /28] 707Y

) 1 . —{2n1

TP i oy 4 /28
! (4.7)
For f=0
HO) = ¢ (2n—2)! (4xt)@>Y {fﬁ%&—@u — ifo/b]7C~D

+ exp{j%) L4 ifoftl "D 4 ,15} (4.8)

Using X™ + [).f*}m = MR{X™} = 2 X|"cos(mb), with ¢ = ARG(S{X}/RIXD),

(4.8) becomes ‘
H(0) = & (2n —2)l(4nb)~ =) |
{2{1 + f2 /82 n=D12005(2¢ — [2n — IJARGL-fo/H]} + 5} (4.9)

+
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(ARG() is as defined in the previous section.) From (3.5)

HU = 8 {1+ {1+ (2f0/)™ + 21+ (2fo /b))
cos(2¢ —n ARGI-2f,/b .
(4.9) and (4.10) in (4.2} e
" Hppp =9 {4.11a)
_ 2[1 + (fo/B)%)~Cr~"M2005(2¢ — [2n — 1| ARG~ fo/H]) + 1
141+ (2f/t3] + 21 + (2/o/b)4]-"cos[24 —n %2;22 Fol B}
: (4.11b)

and

(20 — D (dnb)~Gr=1) (9 — 2)lo-
_ (20 — 219~ Cr-ti(qpy-(n-s)
2¢X[(n — DI2(2rB)-508-7 — - —

- 9t ap [t = DIP2-CH 0y

ICEE I (4.11c)

4.11) gi
a e(r . 1);(1;eﬁ zthj\ ERB of.a genferal GTF where the height of the rectangular
S wheor ‘ f bs_mentaoged in Section 3, in practice we are interested in
el e {;l/ h15 sufﬁ‘cxently large so that the components of H{f) are
el scparais Ilbn the maximum value |H(f)|? ocours at +f;. In this case th
{4.11b) containing the ratio f3/b become negligible and 7 tengs t:

1/2, so that (4.11) can be simplified to
(2r ~ 2) xp 92~
T Te-DF (4.12}

Thus for large fo/b, H 3 .
fo, i » Herp is seen to be proportional to b and independent of

Hepp mqf2 =

where Herp & alnj? (4.13a)
ofn) = B0 =22
(n) [(n~ D12 (4.18b)

Note that thi i i
ihe ax; pl::)d:i;st :?pmxzmatmn t;o Hepp could have been derived directly from
ihe approximate orm of |H(f)|? for large fo/b (see (3.7)), rather than deriving
any ol o Fge;xrzi :i:f:se as do;eliabove. As mentioned in Section 3 fe?
itory modeliing this appro¥imati ;
adequate. However, the general case is given for c:mple:?;l;:: )a‘pp%rs o be

The 3dB bandwidth of the GTF:
Let
[H{e)]* = LH(fo)*/2 (4.14)
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(where [H(f)} has & aximum at fo, then 2i{e — fo)l is the 3dB bandwidth
Higp of the GTF. Using the assumption now that fo/bis large, then from (3.1

H(P ~ B+ (f - fo) /e forf 20 (4.15)
hence . .
\H{fo)P = K (4.16)
and
\H(e)? = KL+ (e = S /01" (417)
Substituting (4.16 and 4.17) into (4.14)
ot = Pl (e~ IAELE (4.18)
from which it follows that
(e — fo)? = [(2/" - 1)¥] o (419)
and ‘
£ ~ fo = b(@ —1)H? (4.20)
Thus the approximate Haap is proportional to » and independent of fo, and
given by ‘
Haap = B(r)b {(4.21a)
where _
: Bln) = 224" - )" (421b)

5 TImplementation of the GammaTone filter through a
multiple pass IIR filtering technique

In this section it is shown how a multiple pass first order IR filter can be
designed to implement the GTF. It was shown in Section 2 (see (2.8)) that

H{f) can be expressed as

H(f) = AN+ A (=F) (5.1a)
where k has now been absotbed into P(f), i.e.
A(f) = kP(f) (5.1b)
Since 2°(t) & X*(—fh
h(t) = a(t) + a*(t) = 2R{a(t)} (52)
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From (5.2) it follows that if z(t) is real, as is the case for speech signals,
(1) ® h(t) = 2R{z(t) ® a{t)} ‘ (5.3)

Le. for real input, filtering with filter H(f} is equivalent to filtering with A(f),

followed hy taking the real part of the ltered signal in the time domain and
multiplying by 2.

A(f) can be expressed as

Af) = eap(ig) (B AP = exp(ig) 2 0% {5.4a)
where . )
Afy =L +i(f - fo) /8 (5.4b)

From (5.4a) it is seen that filtering by A(f) is equivalent to filtering by vA( f)
n times, and then Pbost-multiplying the output by ezp(ig). £ has heen
absorbed into the gain parameter v, which can be adjusted to give the desired
gain. (This is easier than adjusting ¢ to obtain the desired gain.)

A first order ITR filter for implementing 'f.ﬁ( f) can he designed using the
impulse invariance method (Bozic 1981). A full discussion of this method is
beyond the scope of this communication, and the main steps of this design
technique are merely stated without proof,

Basic steps for designing a first order [IR filter to implement the filter YA(F) Z5
V&(t) using the impulse invariance method: .

a) Replace vi(t) with its sarapled form ya(mT"), where T is the sampling
interval, and express it in the form

VE(t) = U™ (5.5)
where U is a constant.
b) Take the z-transform YAz} of ¥a(mT)
vAs(z) = 72 a(mT)z™" = 7U§; Wiz = i——-lgz—i (5.6)
(provided [wz~1| < 1).
¢) Write the first order [IR filter as
¥i = Uz; + wy;.. ' (5.7)

where z; and ¥; are the jth input and output samples respectively,
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Steps (a - ¢) can be carried out for the GTF as follows: From {5.4b) and
(A.5-6)

FT
A(f) = v 2nblamb+4ion(f — fo)] 7t 5 )
! 7 2xbezp(i2z fot)ewp(—2rbt)ult) = vya(t) (5.8)
Following Step (a),
va(mT) = v 2xb exp(i2n fomTYexp{m2xbmT), m >0 (5.9}

i i i - ive.) It is seen that ~&(mT)
t) is dropped as m is restricted to be non-negative.)
i(;l En)the form of {5.5). (It is noted that yh(f) for n > 1 can not be expressed
in this form due to the term (mT)"1.) Step (b) then leads to

I

v 2mh i{ea:pi%’T{ifg L

= Y 2zb (5.10)
T T—exp[2aT(ifo — Bz}

(Note that the condition fwz™'| < 1 is satisfied.) According to Step {c}, the
IIR filter is now given by

i =y 3mb ;b exp[2mT(d fo ~ By (5.11}

vz}

Culculation of:y for unit gain at f = fo:

Since z = exp(i2rfT), f = fo leads to 2 = exp(iln foT'). Hence

- 4 2xh
YA(expli2nfe]) =1 = 1w expi2aT (2 fy ~ b)) expiidn fol ]
S L I (5.12)

1 — exp(—i2nbT)

and _ 1~ exp(—2x0T) (5.13)
h 21h
(5.10) now becomes
¥i = {1 — exp(—2nbT)]z; + exp[22T(i fo — B)|yi—s {5.14)

For each output sample y;, there is one multiplication by a_rf:al constant, one
multiplication by 2 complex constant and one complex addition.

Multiple pass IIR algorithm for implementing the GTE: .

The algorithm for implementing 2 GTF of order n can now be stated as
follows: ' .

v
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1, Set iteration counter IV to
2. Increment the iteration counter N by 1

3. ‘Pass the input array z{j} through the digital IIR filter as expressed
in (5.14) to get the output array y{j} (Nth iteration).

4. If n > N, treat the current output array y{j} as new input ={;}
fmd go to step 2. (After n iterations through steps 2 - 4, the original
input has been filtered by [YA(f)]™.)

5. If ¢ # €, multiply the last output y{j} by exp(i$) (Filtering b
s £
A(f) has now been achieved.) ’

6. Take the real part of the last output y{j}and multiply by 2.

Since on all but the first pass through the IIR filter the £lter input is
complex, calculation of y; in (5.14) requires the multiplication of z; by a real
constant, the muitiplication of y;_; by a complex constant_and one complex
addition, leading to a total of 6 real multiplications and 4 real additions per
sample per pass. For an nth order filter, the fotal number of calculations
required per sample for steps 1-4 of the algorithm is 6n real multiplications
and 4n real additions {treating the input on the first pass as complex).

Holdsworth et al. (Holdsworth-etal. 1988) designed an IR filter to imple-

ment the low-pass filter 4 {1 +i /8] rather than 4 [1 +i(f ~ fo)/81, leadi
to the IIR filter (2 +4(f ~ fo) /81, leading

¥ 1 — exp(—2xbT)}z; + exp(—2xTh)y;.1 { 5.15a)

z; + exp{—2x5T){y;-1 — z;) { 5.15b)

il

Note that (5.15b) is more efficient than (5.15a), requiring one multiplication
less but one extra addition. However to implement a GTTF with this TIR &lter
the original input has to be frequency shifted by — foH'z prior to filtering (i.ei
prior to step 1 in the above algorithm) and the output after step 4 has to be

frequency shifted back by faH 2. This is achieved by producing the new input
array

z; = exp(~-i2x foT'§)z; (5.16)
prior to step 1 and the new output array
y; = exp(i2n foTj}y; (5.17)
after step 4 (see (A.5)). k2

Calculation of y; in (5.15b) requires 2 real multiplications and 4 real addi-
tions. For an nth order GTF, the total number of calculations for performing
steps 1-4 of the algorithm (i.e. excluding the frequency shifting) is 2n real
multiplications and 4n real additions. The total number of calculations with
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the up and down shifting is (2n + 6) real multiplications and (42 + 2) real
additions, taking into account that the original input is real, If ¢ = 0 s0
that the complex multiplication by exp(ig) is not required, only the real part
of the output after shifting back by foH# is required and the total number

. of real multiplications and additions can both be reduced by 1. In terms of

the pumber of calculations required to accomplish filtering by I A(f)] the
algorithm with up and down frequency shifting appears computationally more
efficient. However, the overhead for calculating the complex exponentials (or
retrieving them from a look up table) to effect the frequency shifiing has not
been included irn the calculation. ‘

1t is emphasized that both versions of the algorithm for the digital multiple
pass TR filter approximation to the GTF described zbove are equivalent in
terms of their filtering properties. Although the IIR filter designed in both
cases is based on only one component of the full GTF, the final step in the
algorithm of taking the real part of the filtered signal and multiplying by 2
ensures that in effect the full GTF (rather than the simplified version of the
GTF obtained by assuming fo/b is large) is approximated,

Additional aspects related to the digital IR implementation, such as alias-
ing problems and techniques for avoiding them, are beyond the scope of this
discussion,

6 Summary

The complex spectrum, power spectrum, phase spectrum, equivalent rectan-
gular bandwidth and 3dB bandwidth of the GTF have heen derived. While
for practical cases of interest when the ratio fo/b is large certain approxima-
tions can be made, only the calculation of the 3dB bandwidth actually made
use of this assumption. The range of fo/b over which the approximations are
valid has not been rigorously examined here, but appears to be appropriate
for practical applications of the GTF to auditory modelling. Furthermore, it
was shown that the digital multiple pass IIR filter approximation to the GTF
is an approximation to the full GTF and not its simplified form obtained by
assuming fo/b is large. (This appears o have been a source of confusion in
the past.)
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Appendix A: Summary of notation and standard results
used

Some Fourier Transform Pairs

With the Fourier Transform (FT) defined as

X(f) = [ " a(t) exp(—i2m ft) dt (A.la)
o(t) = ] " X{f)eaplidn fo) df (A.lb)

where upper and Jower case Jetiers denote FT pairs, l.e.
2(t) <5 X(f)
the following FT pairs can be established:

a"(kt) < X°(F) (A2)
§(tta) <5 ezp(Ei2raf) (A3)
ezp(£i2nat) & &(f Fa) (A.4)
2(t)ezp(idnat) & X(f Fa) (A.5)
exp(—at)u(t) &5 (ati2rf)”,  a>0 (A.5)
oty &L (—igm)™ %”;X( f) (A7)
where 5(f) is the delta function, u(t) is the step function
' L t>0
w={ 5 12 (4.8)

and 2" denotes the complex conjugate of z.

Application of (A.4) to obtain the F'T of cos(2n fot + ):
Since cos(y) = ———i—mp;y) 4 ey ;y)

cos(27 fo + ¢)

1 . .
% ezp(i2x fol + i) + 3 exp(~i2n fot —i¢)

= %exp(iqS) exp(i2n fot) + % exp(—id) exp(—i27 fot)
: (A9)

Applying (A.4) to (A.9) and using the linearity of the FT operator
i .
cos(om ot + 8) ZDo S eap(id) 87 — fo) + 5 eop(=iR) B+ o) (A10)
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Application of (4.6) and (A.7) 1o oblain the FT' of exp(—~at)u(l):

From (A.6) and {A.7)
dm
" exp(~at)u(t) £, (—i21:’)“m§;ﬁ- [o+ 322 1) (A.11)

Let X(f) =¥ =fa + 2% f1°1, then
d d d 2
F ) = WXU) 77 )= (=) Y{f)* tion)

d ~8 e 27
EXUJ = (-1 (=-2)¥ ()~ {i2n)

znd in general

20

G = (D" mlla 22 1207 = i fa 2070040 iy
h ’ (A.12)
(A.12)in (A.11)

™ exp(—at)u(t) <L (~i2m) ™™ (=22 )™ m! [a 4 52 f]~Um41)

== m! [a + {2 f]~(m+) (A.13)

Some Theorems

Convolution Theorem:
If 2(t) = v{t) w{t), then

X()y=V() ® W(f
where ® denotes the convolution operator.

Parseval’s Theorem:

[ kra= / “xinra

o
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Some Properties of the FT and Deita Functions

‘Surnmation’ property of the FT:

foo x(t)dt = X(0)

00

[ xpa =20

Sifting property of the delta function:
X(N@f-a)=X(f-a)
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