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Properties and Implementation of the GammaTone 
Filter: A Tntorial 

A. M. Darling 

Abstract 

Starting from the definition of the impulse response of the GammaTone filter, 
its complex spectrum, power spectrum, phase spectrum, the equivalent rect
angular bandwidth, and the 3dB bandwidth are derived. A digital IIR filter is 
designed using the impulse invariance method to implement the GammaTone 
filter digitally through a multiple pass technique, and the approximations in
volved in the IIR filter implementation are clarified. Although roost of these 
results have been published elsewhere, they are derived here in considerable 
detail as a tutorial. 

1 Introduction 

It is generally accepted that the frequency analysis performed by the periph· 
eral aud~tory system can be modelled to a reasonable degree of accuracy by a 
bank of linear bandpass filters. Various filters, e.g. the family of roex filters 
(Patterscn and Moore 1986), have been investigated for this purpose. A tech~ 
nique known as 'reverse correlation' (de Boer and Kuyper 1968), in which the 
responses of a primary auditory nerve fiber to white noise stimuli are measured 
and correlated with the input, is a method for measuring the auditory filter 
shape fairly directly from physiological preparations. This procedure gives 
rise to the so~called lrevcor' function, which within limits can be considered to 
be an estimate of the impulse response of the peripheral auditory filter that 
precedes the spike generation mechanism of that fiber. The GammaTone Fil
ter (GTF) is an analytic mathematical function that approximates measured 
revcor functions (Johannesma 1972). The GTF has a convenient mathemati~ 
cal form that allows various filter properties to be derived analytically. As the 
GTF is derived from measured impulse responses, it has complete amplitude 
and phase information, not just amplitude information as in the case of filters 
derived from psychoacoustical masking experiments, such as the roex filter. 

Holdsworth et al. (Holdsworth et al. 1988) stated various properties of the 
G'fF and presented a digital multiple pass IIR filter scheme for its implemen
tation. This technique enables GTF filter banks to be implemented much more 
efficiently than an FIR filter equivalent, and thus has import;ant implications 
for practical applications (Patterson et aI. 1988). 

We are interested in using a GammaTone filter bank as the frequency anal-
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ysis component in a computer model of speech perception. The purpose of this 
note is to derive the results of Holdsworth et al. (Holdsworth et aL 198$) as 
a tutorial, and to clarify some of the approximations involved. Emphasis is on 
the mathematical derivation of the GTF properties and the IIR filter design, 
rather than analysis of the filter parameters. To make this note reasonably self 
contained, standard Fourier Transform results used are listed in Appendix A. 

2 The complex spectrum of the GammaThne filter 

The impulse response of the GammaTone filter is defined as 

h(t) = { ct"-1 exp(-2~bt)C03(2~fot+f), t > 0 (2.1) 
0, t < 0 

The GTF derives its name from the observation that h( t) is in the form of 
a carrier wave (tone) cos(21tfot + 4» amplitude modulated with an envelope 
that is proportional to tYl

-
1 exp( -21tbt), which is the same functional form as 

the Gamma distribution in statistics. These two components gave rise to the 
name 'GammaTone'. The GTF parameters are: . 

c 
n 

b 

10 (in Hz) 

f (in radians) 

proportionality constant 
the filter order 
(controls the relative shape of the envelope, which 
becomes less skewed as n is increased [for fixed b] ) 
temporal decay coefficient (b > 0) 
(increasing b shortens the duration of h(t)) 
frequency of the carrier wave 
(determines the center frequency of the filter) 
carrier phase 
(determines the relative position of the envelope 
to the fine structure in the carrier wave) 

The frequency response of the GTF is now derived to see what the correspond~ 
ing effects of the GTF parameters are in the frequency domain. 

as 
For ease of mathematical manipulation, it is convenient to rewrite (2.1) 

h(t) = c r(t) 8(t), -00 S; t S; 00 (2.2a) 
where 

3(t) = cos(2~ Jot + </» (2.2b) 

r(t) = t"-1 exp( -2~bt) u(t) (2.2c) 
and u(t) is the step function (see (A.8) in Appendix Af.·.The introduction of 
u(t) allows some standard Fourier Transform (FT) results to be applied (see 
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A endix A). (Note: While q:.. is usually taken to be zero, it is .included in 
t:: analysis here for completeness. It will be seen that for practIcal cases of 
interest, 4> makes a negligible contribution to the power spectrum of the GTF.) 

The frequency respons~ of the GTF is obtained by taking; the FT of h(t), 
i.e. 

H(f) = i: h(t) exp( -i2~ It) dt = c i: r(t) 5(t) exp( -i2~ It) dt (2.3) 

Using the convolution theorem (see Appendix A), it follows from (2.3) that 

H(f) = c[R(f) 0 S(f)l (2.4) 

where 0 denotes the convolution operator an~ up,Per and lower case l~t~er: 
denote FT pairs. From (2.2c) and (A.13), substltutmg.m = n -1 and a - 1r 

R(f)=(n 1)![2~b+i2~/r"=(n-I)!(2d)-"[l+il/W" (2.5) 

(Note: Since b > 0, condition a > 0 in (A.6) is satisfied.) From (2.2b) and 

(A.lO) 
S(f) = ~ {exp(if) o(f - 10) + exp( -if)o(f + to)} (2.6) 

Using the sifting property of the delta function (see Appendix A), it follows 
from (2.4-6) that 

H(f) c [R(f) 0 S(f)l 

.': (n - I)! (2~W" {exp(if) [1+ i(f - lo)/W" 
2 

+exp( -if)[1+ i(f + lo)/W"} (2.7) 

Thus H(f) is of the form 

H(f) = k [P(f) + P'( - fll (2.8a) 

where 
P(f) = exp(i</» [I + i(f - lo)/W" (2.8b) 

and 
k = .':(n -1)!(2~W" 

2 
(2.8c) 

. H(f) consists of the sum of the two components kP(f) and kP'( - fl, 
~~ich are formed by cente:cing the functions Bl (I) and Bz(f) at foB z and 
- foH z respectively, where 

Bl = %R(f)exp(if) } 
B, %R(f)exp( -if) 

(2.9) 
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Since the power spectrum of R(f) has its maximum at f = 0, the power 
spectra of the individual components kP(f) and kP*( - f) of H(f) have their 
maximum at foHz and -10Hz respectively, As will be seen later however, 
this does not necessarily imply for the general case that the maximum of the 
power spectrum of HU) Occurs at ±foHz. 

Note: If x(t) is real, its FT must be Hermitian, i.e. X( - f) = X"(f). 
where * denotes complex conjugate. It. can easily be verified that R(f), S(f) 
and HU) are all Hermitian as expected, 

" The power spectrum and phase spectrum of the Gam
maTone filter 

In the previous section, the complex spectrum H(!) ='IH(!)lexpli,p(!)J 01 
the O'EF was derived, IH(!)I and ,p(!) are the amplitude spectrum and phase 
spert.rum respectively. In this section the power spectrum [H(J)J2 and the 
phase spectrum of the GTF are derived from the complex spectrum. 

The power spectrum: 

The power spectrum IH(!)J' = H(!)H"(!) 01 the GTF is given by 

IH(!) I' k'[P(!) + P"( - f)][P"(!) + P( - I)J 
= k'[IP(!)I' + IP( - f)1' + P(!)P( - I) + P"(!)P"( -I)] 
= k'IIP(!)I' + IP( - f)I' + 2!l1{P(!)P( -!)}] (3.1) 

where k and P(f) are as defined in (2,8) and 3?{X} denotes the real part of 
X. P(f) can be expressed as 

P(J) = exp(i¢)[Q(!Jtn = IQ(!W"exp[-inB,(!)]exp(i¢) (3.2a) 
where 

Q(f) = 11 + i(f - fo)/b] and B,(!) = ARC[(f - fo)/b] (3.2b) 

ARG[y Ix] denotes the principal phase value of the complex variable z with real 
and imaginary parts flX and flY respectively, where fl is an arbitrary scaling 
factor. Hence from (3.2) y. 

P( - I) = exp(i¢)IQ( -fJrn = IQ( - f)1-nexp[-inB,(!)]exp(i¢) (3.3a) 

where 

Q( - f) = 11 - i(f + fo)/b] and 9,(1) = ARCHf + fo)/b] (3.3b) 
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From (3.2·3) 

IP(f) I' 
IP(-I)I' 

= IQ(fw'n = [1+ (f - fo)' /b'rn 

IQ( - fJl-'n = [1 + (f + 10)' /b'tn 
( 3.4a) 
( 3.4b) 

P(J)P(-f) = [Q(f)Q(-IWnexp(i2q,) n' 

= [(1 + i(f - 10)/b)(1 - i(f + lo)/b)t exp(,2¢) 
= [1 + (f' - mfb' - i2/0/Wnexp(i24» ( 3.4c) 

!lI{P(I)P( - f)} = ) 
[(1 + (I' - f5)/b')' + (2/0/b),]-nl'cos[2q, - nB(I)] ( 3.4d 

where 

9(f) = ARC {b[l + (j,2!om/b']} = ARC {b' + (~;ob m} 

From (3.1-4) 

IH(I)I' = k' (\Q(f)I-'n + IQ( - fJl-'n + 

(3.4e) 

2!l1{[Q(f)Q(- fJt nexp(i2¢)}} (3,5a) 

k' {II + (f - 10)' /b'tn + [1 + (f + 10)' fb'r
n + 

2!l1{[1 + (I' - 15)/b' - i2/0/Wnexp(,2¢)}} ( 3.5b) 

= k' {[I + (f - 10)' fb'tn + [1 + (f + 10)' /b'r
n + 

where 

as defined above. 

2[(1 + (f' - 15)/b')' + (2fo/b)'tnl'cos[2¢ - nB(f)]} ( 3.5c) 

k = ~(n -ll!(2~wn 
2 

{ 
-2/0b } 

9(f) = ARC b' + (f' - m 

b 1 (3 5) the smaller b the more rapid the decay of As can e seen rom . , , f h GTF im-
IH(/lIZ away from ±jo, which corresponds to a slower decay Ott ekP(fl and 

I h t" /b the less the componen s pulse response. The arger t e ra 10 JO, •. 1 kP(/) d kP"(- f) 
* ) f H (f) overla and the less the contnbutlOn 0 an 

::I~(fll~ away Irom f:~nd -10 respectively. Althoug~ the ~O\;~r t~::~~! 
) d kP*( - J) have their maximum at fo and -)0 respec lve y, 

:;;'~at~ase with no restrictions on the. GTFt~r:~ete~~:: i~:~~:pe~~:~~ 
of H(f) does not necessarily have maXlma a )0 z. 
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kP(f) and kP"( - f) overlap significantly, IH(f)I' has the character of a low
Pa:'s ~lter with a smgle peak at the origin. As fo/b.is increased (for fixed n) 
thIs smgle ~eak splits and the m~xima move outwards and eventually converg; 
on ±fo. Smce the purpose of the GTF in auditory modelling is to model a 
bandp~~ filter, the ,components kP(.f) and P*( - 1) must be well separated, 
and this In turn requ~res that the ratio lo/b is large. When lo/b is largeenou h 
H (J) can be approxImated as g , 

and 

H(f) "" { kP(J) 
kP"( - f) 

120 
1<0 (3.6) 

IH(J)I' "" k'il + (111- 10)' Wt" (3.7) 

~t. is seen t~at the full form of the power spectrum, but not the approxi~ate 
orm, contams </>. For small fo/b, if> influences where the maxima of the power 

spectrum occur, but has negligible effect for large fo/b. 

f ~1'/tial estimates show that the approximation is probably quite acceptable 
or 0 b > 2 when n :::: 4 (a typical value for n in auditory modelling) In 
gen~r~~ for fixed fo/b, the larger n, the better the approximation. According 
to ? sw?rth e~. aL (1988), when modelling the human auditory system 
fo/b IS .typl~ally m the range 4 < lo/b < 8. Hence for auditory modelling thi~ 
approXImatIOn appears to be appropriate. ' 

The phase spectrum: 

The phase spectrum of the GTF is given by 

.p(J) = ARG ('-'!{H(J))) 
!R{H(I)) (3.8) 

~~%e (~.~~~ and ~{X} denote the real and imaginary part of X respectively. 

!R{P(J)j 
,-,!{P(J)) 
!R{P"( - J)} 
'-'!{P'( - J)} = 

cos[¢ - nO,U)J } 
sin[¢ - nO,(J)] 
cosl-{ ¢ - nO,(J))J 
sinl-{¢ - nO,U))J 

(3.9) 

Eb xpanding (3.9) using (3.4), then from (2.8) and (3.8) the phase spectrum can 
e expressed as 

'.~" 

.p(J) = ARG ('-'!{P(J)) +'-'!{P"(-J)}) 
!R{P(J)J+ !R{P"( - J)} = ARG(f3) (3. lOa) 
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where 

(J 
[1 + (f - 10)' fb'tn!'sin[¢ - nO,U)J - [1 + U + 10)' fb'tn!'sin[¢ - nO,(J)] 
11 + U lo)'lb,]-n!'cos[¢ nO,U)] + [1 + U + /o)'lb'] n!,cos[¢ nO,U)] 

( 3.10b) 

[using sin(-x) = -sin(x) and C08(-X) = cos(x)J. It is noted that .p(0) = 0 
and .p( - J) = -.pU), as expected, due to the H~rmitian property of H(J). 

As for the power spectrum, the expression for the phase spectrum can be 
simplified when the ratio fo/b is large. In this case for I > 0, the terms in /3 
containing 1+10 become negligible when f is in the region of fa or larger, and 
.p(J) reduces to 

.p(J) "" ARG (~:1: = :::~;iD = ¢ nO,(I) = ¢ - n ARG[(I - !o)lb] 
(3.11a) 

Similarly, for I < 0, the terms in f3 containing f - fo become negligible when 
f is in the region of -fa or smaller, and 4>(1) reduces to 

.p(f) "" -If - nO,(J)] = -(f - n ARGI( -(I + !o)lb)]) (3.11b) 

Thus when lo/b is large enough, 

(3.12) 

,Although for the approximate phase spectrum, 4>(-f) = -4>(1), in general 
4>(0) i:- O. Even for large fo/b, the approximate phase spectrum is not necM 
essarily a good approximation to the true phase spectrum near the origin. 
However, regions near the origin where the phase approximation is not good 
corresponds to regions where the power spectrum is' negligible. 

It is seen that both the full and approximate phase spectrum contain 4>, 
whereas it only features in the full, but not the approximate, power spectrum. 

4 The equivalent rectangular bandwidth and 3dB band
width of the GarnrnaTone filter 

In addition to the power speCtrum, two filter parameters that are of interest are 
the equivalent rectangular bandwith (ERS) and the 3dS bandwidth BW3dB' 
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The equivalent rectangular bandwidth of the GTF: 

The equivalent rectangular bandwidth (ERB) of a filter XU) is typi
cally defined as the width of a rectangular filter whose height equals the 
maximum of the power spectrum of XU) and passes the same amount of 
power as XU)· The concept of the ERB is illustrated in Fig. 4.1 for a 
hypothetical bandpass filter with well separated bands and power spectrum 
maxima at ±fo. A slightly more general definition of the ERB allows the 
height of the rectangular filter to be merely predefined at some fixed level. 
The ERB for the general GTF where the height of the rectangular filter is 
IH(foW can be calculated as follows, making no assumptions at present as 
to whether this actually is the maximum of the power spectrum of H(f). 

IHU)I' 

-/0 10 
1 

Fig. 4.1 

The area of each rectangular box in Fig. 4.1 is HERB!H(foW, which is 
equal to half of the power passed by the GTF. Since the power passed by 
the GTF is the integral of the GTF power spectrum, the relationship between 
HERB and IHUlI' is 

2HERBIH(fo)I' = 1: IH(f)I'dl (4.1) 

21~ IHU)I'dl 

(since IH(f)I' is symmetric) 

Applying Parseval's theorem and the 'Summation' property of the FT (see 
Appendix A) to (4.1), ','. 

where 

From (2.2) 

J:' IH(f)I'dl J:' Ih(t)I'dt 
HERB = 2lH(foll' = 2IH(fo)I' 

hit) = Ih(t)I' 

hit) = c'l'(t)8(t) 
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H(O) 
21H(fo)l' ( 4.2a) 

(4.2b) 

(4.3a) 

fit) = t'n-'exp( -41rbt)u(t) 

sit) = co,'(21rlol+ ¢) 

(Note that u(t)' = u(t).) Thus 

H(!) = c'[fl(J) 0 S(J)j 

Applying (A.13) to (4.3b) 

b '2 I)-('n-I) fl(f) = (2n - 2)1 (41r +. 1r 
= (2n - 2)1 (41rw(,n-l) (I + il/2b)-(,n-l) 

d I · (A 9) and the convolution theorem to (4.3c) an appymg . 

S(J) = [exP(i¢) 6(J - 10) + exp~i¢) 6(J + /0)]0 

2 [exp~i¢) 6(J _ 10) + exp~i¢) 6(J + fol] 

(4.3b) 

(4.3c) 

(4.4) 

(4.5) 

= exp~2¢) 6(J _ 2/0) + exp( :i2¢) 6(J + 2/0) + ~6(f) (4.6) 

as can be verified using (A.3). From (4.4-6) 

H(f) c'[flU) 0 SU)j 

= c'(2n _ 2)1 (41rw('n-l) {exp~2¢)[1 + iU - 2/0)/2w(,n-l) 

+ exp( -i2¢) [I + i(f + 2/0)/2w('n-l) + ~[I + i(f /2w"n-I)} 

4 (4.7) 

For / = 0 

H(O) { 
exp(i2¢) 't /bj-(,n-I) c' (2n - 2)1 (41rw(,n-l) --4-[I-.JO 

+ exp(:i2¢) [I + i!o/w('n-I) + n (4.8) 

UsingXm + [X'jm = 2!R{xm l = 2IXlmcos(mO), with 0 = ARG(\S{Xl/!R{X)), 

(4.8) becomes 

H(O) = c' (2n - 2)1 (41rw(,n-l) 'I 

H(l + IJWt(,n-I)/'cos(2¢ - [2~ -ljARG[-!o/b]) + 2} (4.9) 
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(ARGO is as defined in the previous section.) From (3.5) 

IH(fo)I' = k' {1+ [1+ (2fo/b)'tn + 2[1+ (2fo/b)'J-n/2 

cos(2q\ - n ARG[-2fo/b])) (4.10) 

(4.9) and (4.10) in (4.2) 

HERB = 'fJ P, ( 4.11a) 

where 

w + (fo/b)'J-(,n-1)/'cos(2q\ - [2n -IIARG[- fo/bl) + ~ 
p = 1 + [1 + (2fo/b)']-n + 2[1 + (2fo/b)']-n/'cos[2q\ n ARG( 2fo/b)] 

and 
(4.11b) 

= o'(2n - 2)!(41l'bt('n-1) _ (2n _ 2)!2-('n-1)'(1l'b}-('n-1) 
~ 2c'[(n 1)!]'(21l'b)-'n2-' - [(n 1)!]'2-('n+t)(1l',b) 'n 

(2n - 2)! 1l'b 2'-'n 
[(n 1)l]' ( 4.11c) 

(4.11) gives the ERB of a general GTF where the height of the rectangular 
filter is IH(fo)l2. As mentioned in Section 3, in practice we are interested in 
the case where fo/b is sufficiently large so that the components of H(f) are 
well separated and the maximum value IH(fW occurs at ±fo. In this case the 
factors in (4.11b) containing the ratio fo/b become negligible and p, tends to 
1/2, so that (4.11) can be simplified to 

(2n - 2)! 1l'b 2'-'n 
HERB'" n/2 = [(n I)!]' (4.12) 

Thus for large fo/b, HERB is seen to be proportional to b and independent of 
fa, i.e. 

HERB'" a(n)b (4.13a) 
where 

(2n - 2)!22- 2n1l" 

a(n) = [(n 1)1]' (4.13b) 

(Note that this approximation to HERB could have been derived directly from 
the approximate form of IH(f)1 2 for large fo/b (see (3.7)), rather than deriving 
it from the more general case as done above. As mentioned in Section 3, for 
any realistic GTF for auditory modelling this appro:*imation appears to be 
adequate. However, the general case is given for completeness.) 

The adB bandwidth of the GTF: 

Let 
IH(e)I' = IH(fo)I'/2 (4.14) 
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I( fi )1 is the 3dB bandwidth 
(where IH(f)I' has ~ maximum at fit?' t~:: ~h!tfo;'b is large, then from (3.7) 
H3dB ofthe GTF. Usmg the assump Ion 

)'/b,]-n IorI > 0 (4.15) 
IH(f)I' '" k'[1 + (f - Io -

hence 
IHUo)I' '" k' 

(4.16) 

and 
IH(e)I' '" k'[1 + (e - Io)' fb'tn (4.17) 

Substituting (4.16 and 4.17) into (4.14) 

k'2-1 = k'[1 + (e - Io)' /b't
n (4.18) 

from which it follows that 

(e _ Io)' = [(21/n -1)b'] (4.19) 

and e _ Io = b(21/n _1)1/' (4.20) 

. . I t n and independent of /0, and 
Thus the approximate H3dB IS proportlona 0 

given by HOdB '" (3(n)b (4.21a) 

where (3(n) = 2(21/n _1)1/' (4.21b) 

5 Implementation of the GammaT?ne filter through a 
multiple pass IIR filtering technique 

1 'l ass first order IIR filter can be 
In this section it is shown how a ru 

tIP ~ Pwn in Section 2 (see (2.8)) that 
designed to implement the GTF. t was s 0 

H (f) can be expressed as 

H(f) = AU) + A'( - f) (5.1a) 

where k has now been absorbed into P(f), i.e. 

AU) = kP(f) 
(5.1b) 

Since x'(t) t:!.. X,( - f), 

h(t) = a(t) + a'(t) = 2!R{a(t)) 
(5.2) 
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From (5.2) it follows that if x(t) is real, as is the case for speech signals, 

x(t) 0 h(t) = 2iJ1{ x(t) 0 a(t)) (5.3) 

i.e. for real inp~t, filtering with filter H(f) is equiValent to filtering with AU), 
followed by takmg the real part of the filtered signal in the time domain and 
multiplying by 2. 

AU) can be expressed as 

A(J) = exp(i¢) [k'/' A(J))" = exp(i¢) hA(J»)' 
(5.4a) 

where 

A(J) = [1+ i(J - Jo)/W' (5.4b) 

Fro;" (5.4a) it is seen that filt:ring by A(J) is equivalent t~ filtering by ,AU) 
n times, ~nd then ~ostNmultlplymg the output by exp(i¢). pin has been 
ab~orbed ~n~o the. gam parameter " which can be adjusted to give the desired 
gam. (This is easIer than adjusting c to obtain the desired gain.) 

. A fir~t or~er UR filter for implementing "tAU) can be designed using the 
Impulse lnvanance method (Bozic 1981). A full discussion of this method is 
beyo~d the scope of this communication, and the main steps of this design 
techmque are merely stated without proof. 

BNasic $t~ps for d,esigning a first order IIR jilter to implement the filter "t AU) ~ 
,a(t) usmg the zmpulse invariance method: 

a) !l-eplace ,a(t) with its sampled form ,a(mT), where T is the sampling 
mterval, and express it in the form 

(5.5) 
where U is a constant. 

b) Take the z·transform ,A.(z) of ,il(mT) 

,A,(z) =, f a(mT)z-rn = ,U f w;':.z-rn = ,U 
m=O m=O " • 1 - wz-1 (5.6) 

(provided /wz- I / < 1). 

c) Write the first order IIR filter as 

Yi = ,Uxi +WYi-1 (5.7) 

where Xj and Vi are the jth input and output samples respectively. 
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Steps (a - c) can be carried out for the GTF as follows: From (5.4b) and 
(A.5·6) 

, 2~b[2~b+ i2~(J - Jo)t' ?!... 
'Y 2~b exp(i2~ Jot)exp( -2~bt)u(t) = ,;;(t) (5.8) 

Following Step (a), 

,il(mT) ,;, 2~b exp(i2~JomT)exp( -2~bmT), m 2 0 (5.9) 

(u(t) is dropped as m is restricted to be non-negative.) It is seen that ia(mT) 
is in the form of (5.5). (It is noted that ,h(t) for n > 1 can not be expressed 
in this form due to the term (mT)n-l.) Step (b) then leads to 

00 

,A,(z) = ,2~b I: {exp[2~T(iJo - b)Jlrnz-rn 
m=O 

, 2~b 
(5.10) 1- exp[2~T(iJo - b»)Z-1 

(Note that the condition Iwz-11 < 1 is satisfied.) According to Step (c), the 
!IR filter is now given by 

Yi =, 2~b Xi + exp[2~T(iJo - b»)Yi-1 

Calculation of 7 for unit gain at f = fo: 

and 

Since z = exp( i2nIT), f = fo leads to z = exp(i21( foT). Hence 

,A,(exp[i2~Jo)) = 1 
, 2~b 

1 exp[2~T(iJo b)) exp[-i2~JoT) 
, 2~b 

1 - exp( -i2~bT) 

1 - exp( -2~bT) ,= 2~b 
(5.10) now becomes 

Yi = [1 - exp( -2~bT»)xi + exp[2rrT(iJo - b»)Yi-1 

(5.11 ) 

(5.12) 

(5.13) 

(5.14) 

For each output sample Yi, there is one multiplication by a real constant, one 
multiplication by a complex constant and one complex addition. 

Multiple pass lIR algorithm for implementing the GTF: 

The algorithm for implementing a GTF of order, n can now be stated as 
follows: . 
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1. Set iteration counter N to 0 

2. Increment the iteration counter N by 1 

3. Pass the input array x{j} through the digital IIR filter as expressed 
in (5.14) to get the output array y{j} (Nth iteration). 

4. If n > N, treat the current output array y{j} as new input x{j} 
and go to step 2. (After n iterations through steps 2 ~ 4, the original 
input has been filtered by hAU)]'.) 

5. If 4> '" 0, multiply the last output y{j} by exp(i4» (Filtering by 
AU) has now been achieved.) 

6. Take the real part of the last output y{j)and multiply by 2. 

Since on all but the first pass through the IIR filter the filter input is 
complex, calculation of Yi in (5.14) requires the multiplication of Xi by a real 
constant, the multiplication of Yi-l by a complex constant~a.nd one complex 
addition, leading to a total of 6 real multiplications and 4 real additions per 
sample per pass. For an nth order filter, the total number of calculations 
required per sample for steps 1~4 of the algorithm is 6n real multiplications 
and 4n real additions (treating the input on the first pass as complex). 

Holdsworth et a1. (Holdsworth et al. 1988) designed an IIR filter to imple
ment the low-pass filter "I [I + if /b]-l rather than "I [I + iU - /o)/b]-'. leading 
to the IJR filter 

Yj [I - exp( -2~bT)]xj + exp( -2~Tb)Yj_l 
= Xj + exp( -2~bT)(yj_l - Xj) 

( 5.15a) 

( 5.15b) 

Note that (5.15b) is more efficient than (5.15a), requiring one multiplication 
less but one extra addition. However to implement a GTF with this IIR filter, 
the original input has to be frequency shifted by - 10Hz prior to filtering (i.e. 
prior to step 1 in the above algorithm) and the output after step 4 has to be 
frequency shifted back by 10 Hz. This is achieved by producing the new input 
array 

Xj = exp(-i2~foTj)xj 
prior to step 1 and the new output array 

Yj = exp(i2~ foTj)Yj 

after step 4 (see (A.5)). 

(5.16) 

(5.17) 

Calculation of Yi in (5.15b) requires 2 real multiplications and 4 real addi
tions. For an nth order GTF, the total number of calculations for performing 
steps 1-4 of the algorithm (Le. excluding the frequency shifting) is 2n real 
multiplications and 4n real additions. The total number of calculations with 
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the up and down shifting is (2n + 6) real multiplications and (4n + 2) real 
additions, taking into account that the original input is real. If ~ = 0 so 
that the complex multiplication by exp(i~) is not required, only the real part 
of the output after shifting back by foH z is required and the total number 
of real multiplications and· additions can both be reduced by 1. II! terms of 
the number of calculations required to accomplish filtering by h A(f)]n the 
algorithm with up and down frequency shifting appears computationally more 
efficient. However, the overhead for calculating the complex exponentials (or 
retrieving them from a look up table) to effect the frequency shifting has not 
been included in the calculation. 

It is emphasized that both versions of the algorithm for the digital multiple 
pass IIR filter approximation to the GTF described above are equivalent in 
terms of their filtering properties. Although the IIR filter designed in both 
cases is based on only one component of the full GTF, the final step in the 
algorithm of taking the real part of the filtered signal and multiplying by 2 
ensures that in effect the full GTF (rather than the simplified version of the 
GTF obtained by assuming lo/b is large) is approximated. 

Additional aspects related to the digital IIR implementation, such as alias~ 
ing problems and techniques for avoiding them, are beyond the'scope of this 
discussion. 

6 Summary 

The complex spectrum, power spectrum, phase spectrum, equivalent rectan
gular bandwidth and 3dB bandwidth of the GTF have been derived. While 
for practical cases of interest when the ratio 1o/b is large certain approxima
tions can be made, only the calculation of the 3dB bandwidth actually made 
use of this assumption. The range of lo/b over which the approximations are 
valid has not been rigorously examined here, but appears to be appropriate 
for practical applications of the GTF to auditory modelling. Furthermore, it 
was shown that the digital multiple pass IIR filter approximation to the GTF 
is an approximation to the full GTF and not its simplified form obtained by 
assuming 1o/h is large. (This appears to have been a source of confusion in 
the past.) 
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Appendix A: Summary of notation and standard results 
used 

Some Fourier Transform Pairs 

With the Fourier Transform (FT) defined as 

XU) = I: x(t)exp(-i2~ft)dt 
x(t) = I: XU) exp(i2~ ft) df 

where upper and lower case letters denote FT pairs, i.e. 

x(t) tI.. X(f) 

the following FT pairs can be established: 

x'(±t) 
:PT X'('fJ) ...-, 

S(t±a) 
:PT 

exp(±i2~aJ) <---' 

exp(±i2~at) 
:PT IiU 'I' a) <---' 

x(t)exp(±i2~at) 
J'T 

XU 'I' a) <---' 

exp(-at)u(t) 
:PT 

(a +i2~fr', <---' a>O 

:FT d'" 
tm x(t) <---' ( -i2~ rm dfm X (f) 

where 8(t) is the delta function, u(t) is the step function 

{
I, t > 0 

u(t) = 0, t < 0 

and x" denotes the complex conjugate of x. 

Application of (A.4) to obtain the FT of cos(2~ fat + 1): 

S. () exp(iyJ + exp(-illl mcecosy = 2 2 

cos(2~ fat + 1) ~ exp(i2~ fat + i1) + ~ exp( -i2~ Jot - i1) 
2 2 

(A.la) 

(A.lb) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.5) 

(A.7) 

(A.8) 

~ exp(i1) exp(i2~ Jot) + ~ exp( -i1) exp( -i2~ Jot) 

2 (A.9) 

Applying (AA) to (A.9) and using the linearity of the FT operator 

cos(2~ Jo!+ 1) tI.. ~ exp(i1) S(f - fa) + ~ exp( -i1) SU + fo) (A.I0) 
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Application of (A .6) and (A. 7) to obtain the 1'7' 01 tm exp( -at) u( t): 

From (A.6) and (.'1.7) 

d"' 
t
m

exp(-at)u(/),"2. (-i2ntm djm[a+i2n1t' 

Let XU) = [YU»)-1 = [a + i2"I)-I, then 

~XU) d:rf)X(f) ~YU) = (-I)YUt'(i2n) 

,p 
df'X(f) 

and in general 

(A.12) in (A.Il) 

(-1) (-2) Y(Jt' (i2o)' 

(A.Ill 

t
m 

exp( -at) u(t) ,"2. (-i2nt m (-i2n)m m![a + i2nltlm+l) 
= m! [a + i2nlrlm+l) (A.13) 

Some Theorems 

Convolution Theorem: 
If x(t) = vet) wet), then 

XU) = VU) 09 W(f) 

where 181 denotes the convolution operator. 

Parseval's Theorem: 
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Some Properties of the FT and Delta Functions 

'Summation' property of the FT: 

1: x(t)dt = X(O) 

1: X(J) df = x(O) 

Sifting property of the delta function: 

X(J) 09 6(J - a) = X(J - a) 
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