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Abstract

Recent research into the acquisition of spoken laggihas
stressed the importance of learning through emblodie
linguistic interaction with caregivers rather thahrough
passive observation. However the necessity of aoteEm
makes experimental work into the simulation of irifapeech
acquisition difficult because of the technical cdexty of
building real-time embodied systems. In this papermresent
KLAIR: a software toolkit for building simulationsf gpoken
language acquisition through interactions with réual infant.
The main part of KLAIR is a sensori-motor serverttha
supplies a client machine learning application wétlvirtual
infant on screen that can see, hear and speak.@ysulating
the real-time complexities of audio and video pesoeg
within a server that will run on a modern PC, we édpat
KLAIR will encourage and facilitate more experimdnta
research into spoken language acquisition thrantghaction.
Index Terms: speech acquisition, machine learning,
autonomous agent, situated learning, toolkit

1. Introduction

Research into the machine acquisition of spokenuageg is
still in its infancy. Most research has concenttate sub-
parts of the problem, such as the segmentatiohe&peech
stream into words [1], the discovery of perceptteategories
corresponding to phonological choices [2] or theeligoment
of articulatory gestures through imitation [3]. thermore this
research has mostly been "off-line" in the sensa the
caregivers' spoken interactions are recorded, ctone a
corpus, and processed in batches at a later time.

Recently we have come to realise the importance of
embodiment and real-time interactions as esseptais of
spoken language acquisition [4] and to incorportitese
elements within our research. In [5], for exampleward and
Messum showed that an infant can acquire the ptagtuof
proto-words not by imitation but by being rewarded a
caregiver — the initial form of the words arisingenaly
through the infant exploring the capabilities tfvocal tract.
In ongoing work we are looking at the use of adult
reformulations of infant sounds to address the lprabthe
infant has in associating and matching adult sotads own
vocal productions.

This focus on interaction also fits well with thetcal
accounts that treat language acquisition as mudocal
process as a cognitive one [6]. In such accouatgyuage is
acquired as a product of attempted meaningful conication
with caregivers, rather than as the result of passbservation
of language use among others. The implication a Hetter
models of infant language acquisition and bettefopeing
machine learning systems will occur when interactmgiven
its proper value. For machine learning this willofve placing
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our learning system within an agent that is sitiaite the
world where it can both sense its environment and
communicate about it with caregivers.

While many researchers may support the need for a
situated autonomous agent for language acquisitfem
researchers have the technical competence to irepkesuch
an agent. Existing tools in this area are extreneslyensive
and difficult to use; for example the iCub robot [@)sts
thousands of pounds and requires an understandimgwoto
control an elaborate mechanical system. We belithe
unavailability of suitable tools to support spokimguage
interaction has hindered research in the area. Thsspport
and encourage further research we have develop@dRla
toolKit for Language Acquisition through Interagi®in Real-
time. The main part of KLAIR is a sensori-motor sgrthat
implements a virtual infant on a modern Windows PC
equipped with microphone, speakers, webcam, scesgh
mouse. The system displays a talking head modaleca
human infant, and can acquire audio and videoahtmme. It
can speak using an articulatory synthesizer aodntsense the
position of parts of its virtual body. The servengnunicates
with a background machine learning client that dowin on
the same or a separate computer. We aim to suplp®K
free of charge to interested researchers.

In this paper we describe and justify the decisitrat
went into the design of the KLAIR server. We proviteme
technical details about its implementation and give
suggestions for research directions that couldabiitated by
the system.

2. KLAIR Design

In this section we describe the design goals astifjuthe
design decisions of the KLAIR toolkit.

2.1. Why Interactive?

Fundamentally, KLAIR is designed to instigate anatapture
interactions between a machine learning "agent"ahdman
caregiver. On-line interactions allow the agentlserve how
its outputs affect the behaviour of the caregiwerd for the
caregiver to adapt their responses to the progediethose
outputs. In addition there is often an assumptioroff-line
learning that the system or the caregiver are hanging with
time over a series of communication events. Butnitsfacan
easily tell the difference between live and recdrde
interactions [8] precisely because the interactamsadaptive
to the state of the parties.

There is a lot of work on language acquisition that
concerns itself with discovering the underlyingusture of
language through passive observation of statistitsthe
surface form of language. For example, there as&gerys that
"discover" words by looking for repeating spectemporal
patterns in the speech signal [9]. The essentiatdtion of



this idea is that the learning agent does not kwhat objects
are being referred to and cannot use informatiomfthe real
world to establish whether two audio patterns afterént
versions of the name of some object or whether thésr to
two different objects. For an agent to build a disnative
model of speech, which identifies lexical choicead a
establishes a phonology of language, it needs soouer
through interaction which utterance components ‘dhe
same" and which are “different”.

Interactions are also very useful to the agenixplaging
how spoken communication works. From the earligshgpts
at using facial expressions to indicate awareneske use of
vocalised sounds to elicit caregiver responsesragtions are
essential to allow the agent to explore the ranfyeiseful
motor outputs and to learn how to exploit themamgeward
in turn taking and dialogue.

2.2. Why Multi-modal?

If we situate an agent in an environment where loitjects
and spoken descriptions can be perceived, theaghet has
the opportunity to learn both words and their megnit can
then compute a probability distribution over worfds some
given object or event that can be used in bothgeition and
in expressive speech. Conversely, common chardaterisf
utterances used by caregivers in different sitnationay
indicate conceptual links between objects: categosuch as
"toys" or "food" for example.

Another important aspect of multi-modality is pgrten
of self — awareness that motor outputs have sensamge-
guences. Such exterioception and proprioceptioressential
in learning how to perform efficient motor contr@peech
articulation is a skilled action [10] incorporatingmediate
compensation that can only be learned with feedffrack the
effects of the motor system. To learn control akal vocal
tract it is clearly essential to perceive its aoditeffects, so
that auditory goals can be maintained. But in addlitit is
important to know where the articulators are cutyeposi-
tioned, particularly in the presence of noise aadybations,
since in these cases feed-forward control will makelequate
predictions. Perrier [11] found evidence that mergpresen-
tations of speech production are multimodal, dssed with
regions of the acoustic, orosensory and motor obspaces,
with the acoustic modality having the highest levebriority

Multimodality also provides additional channels for
communication between agent and caregiver. Sentiieg
caregiver's response to an utterance will be useftiie agent
for reinforcement learning and for turn-taking. higithe
agent's facial expressions to indicate emotiorzaéstmay help
the caregiver match feedback to the agent's needs.

2.3. Why Embodiment?

It is important that we embody the agent for sdvera
reasons. Having a vocal tract, even a rough sitonlaf one,
not only provides important constraints on the kiofl speech
sounds that can be generated but also providegrauns on
the process of learning how to speak. If we hopelraw
parallels with infants, then a vocal tract drivey imotor
commands is a pre-requisite. In addition, a voraittmodel
makes the link between speech sounds and the sbéples
jaw and lips producing a more convincing illusidratt the
virtual infant is actually speaking.

It would have been possible to build an interagtiaalti-
modal agent without a face, but there are a nurabezasons
to think that making the agent look somewhat likbleman
infant will be advantageous. Firstly, we want te@mrage our
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experimental subjects to talk to the agent in dafixely)

natural way, with an expectation that their respsnwill be

similar to those they would have given to a redhnh An

infant face will hopefully make their experience amgaging
one, and may even provoke the use of motheresegiCare
are also expert in decoding facial expressionssantthese can
be exploited by the agent to obtain required respsnFor
example, simply looking at the caregiver or lookiag an

object when speaking may indicate the differencevéen a
command and an observation.

Additionally, embodiment demonstrates the imporganc
we put on modelling the agent to at least someedegn the
capabilities of a human infant. Of course at theent state of
technology, such modelling is extremely crude. Bumhn
infants are the only systems known to us that fatijwe the
spoken language acquisition problem and it may e t
comparisons between the agent and an infant canugiclues
as to how to improve the agent's performance. Iffaileto
make the link to infant development and behavitluen any
discoveries we make can always be criticised asbedtg
relevant to the human situation.

2.4. Why Real-time?

We have already pointed out that the advantagatefactive
learning is that the communication between agend an
caregiver can develop and adapt from one conversatiurn

to the next. To achieve natural interactions thgtesy must
operate in close to real-time, that is the resparigbe agent
to a caregiver's utterance must be quick enough fesponse
to be associated with a stimulus. The system mesite to
control its vocal tract at typical articulatory eatif it is to
make speech-like sounds. To give the illusion ofirdual
infant, movement of the jaw and lips must be syootsed
with the spoken output. Slowed down speaking or
understanding would disturb the naturalness of ninfa
caregiver dialogue.

25.Why Separate Learning Agent from Sensori-
motor Server?

KLAIR is implemented as two separate components: a
machine-learning (ML) client and a sensori-motorvee
There are a number of advantages to this configur.afEirstly
the sensori-motor server contains all the real-tandio and
video processing, that is both complex and clostheoPC
hardware. To create the illusion of presence, tEntamust
look as though it is constantly aware of its sundings even

if it is performing a lot of background processinidius the
server application needs to be autonomous to ttemethat it
constantly presents a body state that changes bimomier
time. The background client polls the server toerex past
input and queues motor commands to be executeddn t
future. While it is better for the client to "keep" with the
conversation, it is not operating under the same pressures
as the foreground simulation.

Another advantage of the separation between chedt
server is that it allows other researchers to heeserver even
when they use different technologies and progrargmin
languages. We have chosen a very simple asynchsonou
function-call protocol to connect client and serwghich
allows the client to be written in a number of eifnt
programming languages. The call protocol also dpsraver a
computer network, allowing the client to resideadifferent
computer to the server, or even for the serveretadntrolled
by multiple clients.



3. KLAIR Implementation

3.1. Configuration

The KLAIR toolkit is designed to run on a modern \dbomvs
PC with a microphone, speakers, webcam, mouse aadnsc
The central component is the sensory-motor seqwglication
that provides sensory input and motor output faseparate
machine learning client application. The serversramultiple
real-time processing threads, while the learningtesy runs
asynchronously in the background and which poksdérver
to input audio, video and sensory signals, or tiveefacial
expressions or vocal output. See Fig 1. The separ
optionally log all I/O to disk for off-line proceiss).

Client Application

KLAIR
( 1/O Manager
Proprioception Proprioception Vision Audition
+ Speech A 4 | |
Cl\gcr)]ttcrygl L Analysis j [ Analysis J
r r s
A\ 4 =
Vocal Tract .
Synthesizer Camera Microphone
Speaker
A\
B

Caregiver

Fig 1. KLAIR and its interactions with a caregivéd AIR
receives auditory input from a caregiver using arophone

A and corresponding visual input from a webcam Gese
signals are processed and sent to the I/O managerl/O
manger also receives incoming motor commands from a
client application and passes them to a motor otheir
Speech output B is generated using an articulatory
synthesizer and its movements are synchronized no a
animated head D. Objects in the environment E @asden

by both KLAIR and the caregiver.

3.2. Motor Output

The audio output stream is generated through aptatitan of
the articulatory synthesizer of Shinji Maeda [12p t
approximate an infant-sized vocal tract. This take®
articulatory parameters as input: JW: Jaw PositidR;:
Tongue Position, TS: Tongue Shape, TA: Tongue Esipan
LA: Lip Aperture, LP: Lip Protrusion, LH: Larynx Hight,
NS: Velopharyngeal port opening, GA: Glottal ApeguFX:
Fundamental Frequency, VQ: Voice Quality, and P$-s
glottal pressure. Dynamical smoothing of the patanseover
time is applied using a critically-damped secondeorspring-
mass system.
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Fig 2. KLAIR Infant Talking Head (from left to righ open
jaw plus reduced lip spreading with neutral exgess
displaying pleasure, and displaying confusion.

The visual appearance of the server is as an itdi#lihg head
(see Fig 2). This is an OpenGL implementation ef tdlking
head MASSY [13] adapted to appear as a virtual muma
infant. The head is controlled using three set@amfmation
parameters: one describing the articulatory movésnerf
speech, one describing facial expressions, anddeseribing
movements of the head and eyes. The 6 articulpamameters
are: vertical jaw opening, tongue advancementtttna,
vertical tongue dorsum position, vertical tongye fiosition,
vertical lip opening, and lip spreading/protrusiofihese
parameters have been designed to enable the disglay
visually distinguishable German and English phorenidey
are derived automatically from a linear combinatiointhe
control parameters of the articulatory synthesizdrere the
coefficients are manually optimised for the bestamaf vocal
tract shapes in both parameter models. There ipdhsibility
for a unified parameter model in a future versibthe toolkit.

The 23 facial expression parameters are: innerreyeb
riser, outer eyebrow riser (left/right), eyebrovpdessor, upper
and lower eyelid depressors (I/r each), cheek r¢is¢, nose
wrinkle (I/r), nose wings opener, upper and lowprrhisers
and protruders, lip stretchers and depressoredth), and jaw
advancer and side shifter. A huge variety of faeigiressions
— e.g. for displaying emotional states — can beiobtl by
combining these facial expression parameters. Téte 0§
animation parameters is inspired by action unitshef facial
action coding system (FACS, [14]) but is in contitasEACS
designed for the generation of facial expressiorstead of
their description. Fig. 2 shows examples of thaldtion and
facial expressions of the infant talking head.

3.3. Sensory Input

The audio input stream delivers information abcuw t
loudness, pitch and timbre of sounds currently dpeicquired
from the microphone or generated by the articujator
synthesizer. A psychoacoustic model of the audipanphery
is used to deliver estimates of loudness. An autetadion
analysis provides estimates of pitch, while an tudli
filterbank based on the channel vocoder providémetes of
spectral envelope across 24 frequency channelndes are
provided in real time at 100 frames/sec.

Video capture is performed using the Windows VW
interface. The lowest supported resolution is 32@xpixels
at 10 frames/sec. Captured frames are each convertad
RGB bitmap. Future enhancements of the toolkit majude
some level of visual feature representation.

The client can also obtain proprioception and
exterioception input from the server. Proprioceptimput
returns the current vocal tract configuration, umithg
information about articulator contact. Exterioceptiinput
converts mouse movements to a form of touch semsati



depending on whether the mouse cursor is overiguahsed
face.

3.4. Machine Learning Client

The ML client contains all the machine learning poments
used in experiments with the toolkit. The clientmrounicates
with the server through asynchronous remote praeedalls
(RPC). We anticipate a rather slow polling rate ofb10
calls/sec, transferring 10 audio frames and oneovicame per
call, but higher rates are possible. The servelr médintain a
short history of frames for when the client fallshind. We
have endeavoured to make the interface as simpt@ssble
and not to restrict the computer languages in witich
executive may be programmed by toolkit users. Iniqdar
we provide a MATLAB interface to the RPC mechanism.

4. Research potential

Our current work being carried out with element&bAIR is

in the modelling of a non-imitative account of the
development of infant speech production that inetudatural
physiological constraints such as those imposedsgmech
breathing [15]. This requires interactivity sinbe tmodel uses
caregiver reformulations to first reinforce the adigery of
simple speech sounds and then to learn a mappitwebe
caregiver and infant speech.

However we believe KLAIR will be of interest to
researchers in a much wider range of spoken lamguag
acquisition topics, for example:

Pre-linguistic development:

Q Listening and responding to speech activity diredtethe
agent with head turns and facial expressions

Q Learning to take turns in speaking

Per ceptual development:

Q Recognition of caregiver's voice

Q Discrimination between utterance functions on thsidof
prosody and voice quality

Q Development of phonological categories in perceptio

Production development:

Q Vocal control, breath control and prosody

Q Babbling and imitation

Q Development of an inventory of articulatory gessure

O Refinements of motor plans to match perceptual caiteg

Linguistic communication:

Q Learning the names of objects & actions

Q Use of speech to satisfy desires or needs of thetag

5. Conclusions

In this paper we have presented some argumentidarse of
real-time interactions with a situated autonomogsna in
spoken language acquisition research. We have nisgséhe
KLAIR toolkit which we hope will make research ingharea
much more accessible to new research workers. W digen
examples of some applications where the toolkit faysed
for experiments. The toolkit will be released foubfic

download prior to September 2009.

In future versions of the toolkit we hope to addreno
functionality within the server to emulate lowerdts of
processing. For example, we may add feature level
representations on top of the raw acoustic andaligata,
such as sparse coding. We would hope to add matistie
dynamical constraints to the articulatory synthesand to the
talking head. We also hope to develop a librarcaimon
pattern recognition and machine learning algorithmselp
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users build client applications. This and exampients will
be shared through a dedicated web site for the RLpYoject.
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