

Use of Prosodic Information During Sentence Processing in Fluctuating Noise

Rebecca Carroll & Esther Ruigendijk

Department of Dutch Studies University of Oldenburg

MOTIVATION

- Acoustic cues used for **prosodic phrasing** (as realized by amplitude modulation, pitch contour, rhythmic information) can **determine** the syntactic structure and hence sentence interpretation. **Proper interpretation** of prosodic cues is thus important for communication.
- A noise masker with an **amplitude modulated envelope** is <u>beneficial</u> for speech recognition due to 'glimpsing' (e.g., Cooke 2006; Wagener et al., 2006). However, fluctuating (compared to stationary) noise can be more detrimental on a cognitive level because it is more difficult to "tune out" or segregate (e.g., Francart et al., 2011).

CURRENT STUDY

Reliability of prosodic information against rhythmic disturbance

- Is prosodic information robust against different types of noise maskers? Or
- Does a fluctuating noise masker disrupt the rhythmic structure of the speech signal?

Material

Dia Sahülar callon aina Driaffraundeahaft anfe

It is unclear whether the "prosodic benefit" of speech perception observed in stationary noise (e.g., Carroll, 2013) will also hold for a **fluctuating noise masker**: A **rhythmic disruption** may affect general speech perception in relatively "natural" listening conditions where the masker is not stationary (e.g., entrainment, stream segregation mechanisms).

PREVIOUS FINDINGS

The prosodic benefit in stationary noise

Carroll, 2013

(To what degree) Does stationary noise affect supra-segmental information as opposed to segmental information in sentence processing?

Material

- [Der Mann verspricht]_{IPB1} [Anna zu entlasten]_{IPB2} ... A to call Anna ... The man promises
- [Der Mann verspricht Anna]_{IPB1} [zu arbeiten]_{IPB2} ... В The man promises Anna to work...

	Introduction	The students are to start a penpalship.
	IPB 2	[Ingo schreibt] _{IPB1} [Judith nicht] _{IPB2} Ingo writes Judith (does) not
	IPB 1	[Ingo schreibt Judith nicht] _{IPB} Ingo writes Judith not/ does not write Judith
	Continuation	aber beide bekommen einen Brief. but both receive a letter.
	IPB 1 Continuation	[Ingo schreibt Judith nicht] _{IPB} Ingo writes Judith not/ does not write Judith aber beide bekommen einen Brief. but both receive a letter.

- Female speaker recorded in sound attenuated booth
- Consistent realization of IPBs:

CARL

V O N O S S I E T Z K Y

OLDENBURG

universität

Method: Event-Related Potentials

- Closure Positive Shift (CPS, Steinhauer et al., 1999) as prosodic ERP component
- 64 channel Ag/AgCl electrodes (10/20 system)
- Context sentence
- Offline comprehension task: interpretation

Participants:

IPB1 in stationary speech shaped noise

... und das Büro zu putzen. Continuation and to clean the office.

Method: Event-Related Potentials

- Closure Positive Shift (Steinhauer et al., 1999) as prosodic ERP component
- 27 Ag/AgCl electrodes (10/20 system)
- Off-line word recall task
- Participants: 27 young right-handed listeners (ø 23.1 yrs, 15♀ 14♂), normal hearing

Manipulation:

- Clear speech, 70 dB SPL
- Speech in stationary speech shaped noise, -3 dB SNR

Results

IPB1 in clear speech

- 25 young listeners with normal hearing
- Native speakers of German (bilinguals excluded)
- Right-handed (adapted Edinburgh handedness inventory, Oldfield 1971)

Manipulation:

- Clear speech (no noise) at normal speech rate
- Speech in stationary speech-shaped noise and supra-threshold SNR **0 dB SNR** (approx. 90% intelligibility)
- Speech in **fluctuating** (amplitude modulated) speech shaped noise, -4 dB SNR (approx. 90% intelligibility)

Presentation:

- Speech in silence at 65 dB SPL (RMS)
- Speech in noise: speech level kept constant at 65 dB, noise added
- GENELEC 8020 loudspeakers, ECHO Gina audio interface
- Sound attenuated & electrically shielded booth

Expected Results

- Speech in silence:
 - Closure Positive Shift (CPS) clearly observable at IPBs between 150 and 500 ms post prefinal syllable onset

- Prosodic (supra-segmental) information still usable in stationary noise
- Reduced effect size, possibly due to larger individual differences (listening effort?)
- NO distinction between rhythmic and pitch-related influences

- **Speech in stationary noise:** CPS slightly delayed, reduced amplitude
- **Speech in fluctuating noise:** CPS not measurable, reduced amplitude
- Higher error rates on offline comprehension task in fluctuating noise
- Delayed effect = "listening effort"?
- Reduced amplitude = individual differences / lower reliability, usability of prosodic cues

REFERENCES

- Carroll, R (2013). Effects of syntactic complexity and prosody on sentence processing in noise. Aachen: Shaker. Cooke, M (2006). A glimpsing model of speech perception in noise. Journal of the Acoustical Society of America, 119(3), 1562-1573. Francart, T, van Wieringen, A, & Wouter, J (2011). Comparison of fluctuating maskers for speech recognition tests. Intl J Audiol, 50, 2-13.
- Meister, H, Landwehr, M, Pyschny, V, Wagner, P, & Walger, M (2011). The perception of sentence stress in cochlear implant recipients. Ear & Hearing, 32(4), 459-46.
- Oldfield, RC. (1971). The assessment and analysis of handedness Edinburgh handedness questionnaire. Neuropsychologia, 9, 97-113.
- Steinhauer, K, Alter, K, & Friederici, AD (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2, 191-196.
- Wagener, KC, Brand, T & Kollmeier, B (2006). The role of silent intervals for sentence intelligibility in fluctuating noise in hearing-impaired listeners. International Journal of Audiology, 45, 26-33.