

Can we compare Sound Quality of Noise Reduction between commercial hearing aids?

A method to level the ground between devices

Inge Brons Rolph Houben Wouter Dreschler

Introduction

Noise Reduction in Hearing Aids

- Chosen principles unknown to clinician: "black box"
 - Selection of best NR for individual
 - Selection of best NR for situation
 - Selection of best NR for Hearing loss
 - Trial and error
- Technical properties differ between hearing aids
- Perceptual effects are unknown
- Direct comparison between NRs required

Noise Reduction in Hearing Aids

- Direct comparison between NRs required
 - Problem: effect of hearing aid >> effect of noise reduction
 - Wanted: effect of hearing aid << effect of noise reduction

Method – Hearing aids

Hearing aids (BTE)

- 🔓 Phonak Exélia M
- ReSound Azure AZ80-DVI
- 440 Widex Mind
- **Starkey Destiny 1200**
- Programming
 - Fine-tuning of first fit
 - Equal insertion gain (difference between aided and unaided response)
 - Compression ratio 1.0 (= no compression)
 - Microphone omnidirectional
 - All features OFF

Method – Hearing aids

Method - Recordings

Input Hearing Recordings aids 1→ 2→ 3→ 125 250 1/2k 1k 2k 4k Frequency (Hz) 4→ 5 125 250 1/2k 1k Frequency (Hz) 2k

linical & Experimental
Audiology

Recording

- Input: pink noise at 70 dB SPL
- Hearing aid on Head and Torso Simulator

Method – Filter design

Method - Filtering

Results

 Evaluation of equalisation filter: comparison of corrected recordings *without noise reduction*

Objective evaluation

- Hearing-aid speech quality index (Kates and Arehart, 2009)
 - HASQI linear: changes in long-term spectral shape
 - HASQI non-linear: changes in signal envelope modulations

linical & Experimental
Audiology

Reference signal (input)

()

Subjective evaluation

- 6 normally hearing subjects
- Detection task
 - Identify odd stimulus from set of three
- Test sets (not mixed):
 - Recordings with bandwidth limitation
 - Recordings with correction for hearing aid + bandwidth limitation
- Three runs, 60 trials per test set; 120 trials per subject

OmpareFilters	
Afspelen: zin 1 van 120	
-1-	
<u></u>	
АВС	
Kiezen	
Welke zin was anders dan de rest?	
A B C	

Subjective evaluation

- Band-pass limited signals were detectable (average 87%)
- Detection of fully filtered signals was much more difficult (average 39%)
- Detection of individual recordings did not deviate from chance

Conclusions & Application

Conclusions & Application

- The equalisation filter levels the ground between devices
 - Differences in HASQI quality index are reduced
 - Detection rate of differences is reduced to about chance level
- This opens the way for future perceptual comparisons
 - The equalisation filter can be applied with noise reduction ON
 - The filter does not influence hearing aid or noise reduction processing in any way
 - Equalization filtering on *output* of hearing aids (*after* HA processing)
 - Differences between aids then originate from noise reduction only
- Perceptual A-B comparison of hearing aid signal processing possible

