Influence of Different Noises on the Performance of Normal Hearing Listeners in an Open Logatome Test

Martina Bellanova¹, Marc Aubreville¹, Matthias Latzel¹, Ulrich Hoppe²

Siemens Audiology Solutions, Erlangen, Germany
ENT Department, University of Erlangen, Germany

Introduction

Speech intelligibility tests showed that logatomes are suitable to evaluate differences between various hearing aid settings. They provide high test-retest stability in both an open and a closed test design (Bellanova et al. 2010).

The purpose of the current study is to evaluate logatome speech material in four different types of masking noise.

Material

Speech material

- 59 CVC (consonant-vowel-consonant) and VCV (vowel-consonantvowel) nonsense syllables, recorded from an untrained female speaker.
- To accomplish further homogenization of the speech material, a subjective adjustment of loudness was conducted by ten normal hearing subjects.

Noise material

- Four types of noise of which two were specifically designed from the logatome corpus and two were general purpose noises, i.e. pink noise and Olnoise (Wagener et al. 1999).
- For the two corpus-specific noises the signal was transformed to the Fourier space, where its phase was set to zero in one signal and to a uniformly distributed random value for the other signal. This resulted in one instationary and one stationary signal after back-transformation, respectively. The test material was equalized to have the same RMS value as the speech material.

Methods

- Ten normal hearing subjects
- To avoid sequence effects, the order of the test stimuli and the order of the noises were randomized for each subject and each test.
- The noises were presented via loudspeaker at 60 dB SPL (0° azimuth), the level of the speech material adapted to 50% speech intelligibility starting at 0 dB SNR.
- Logatome test and Oldenburg Sentence Test
- Five different noises:
 - Olnoise
 - Pink noise
 - Fastl noise (Fastl 1987)
 - Random-phased noise
 - Zero-phased noise

Results

different noises.

Oldenburg Sentence Test

igure 3: Comparison of SNR in Oldenburg Sentence Test for normal hearing listeners in four different noises.

Test-Retest Stability of the Logatome Test

Preliminary results show that test-retest stability is good for stationary noises whereas retests show a high variance in fluctuating noises.

Moreover, preliminary results indicate that test retest-stability varies according to the different phoneme groups.

Conclusions

- Pink noise proves to be a suitable masker for logatomes as well as for Oldenburg sentence material.
- Noises which are spectrally fitting the speech material lead to higher SNRs, i.e. lower L50 performance in both tests.
- There is a higher variance for instationary noises compared to stationary noises in both the logatome test and the Oldenburg Sentence Test.

References

Bellanova M, Serman M, Latzel M, Hoppe U (2010): Entwicklung eines Logatomtests zur mikroskopischen Differenzierung unterschiedlicher Hörgerätealgorithmen. 13. DGA Jahrestagung 2010.

Fastl H (1987): A background noise for speech audiometry, Audiol. Acoustics 26: 2-13.
Wagener K, Kühnel V, Kollmeier B (1999): Entwicklung und Evaluation eines Satztests für die deutsche Sprache I: Design des Oldenburger Satztests. Z. Audiol. 38 (1): 4-15.

Welch, PD (1967): The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms, IEEE Trans. Audio Electroacoustics, Vol. AU-15: 70-73.