

Dynamic aspects of noise reduction in hearing aids

<u>Karolina Smeds</u>, Niklas Bergman, Sofia Hertzman, Torbjörn Nyman

> ORCA Europe, Widex A/S Stockholm, Sweden www.orca-eu.info

ORCA *Europe* Noise reduction (NR) in hearing aids

Why?

- Increase comfort (ease of listening) in noisy situations

- Increase speech intelligibility in noise

How?

- Estimate speech and noise (modulation characteristics)
- Determine SNR in a number of compression channels (8-24)
- Adjust the gain based on certain rules associated with the SNR

Effect?

- Long-term average measurements (Hoetink, Körössy, and Dreschler. Int J Audiol, 48, 2009, 444-455)
- Evaluations of NR:s point towards benefit in comfort (ease of listening), but seldom in speech intelligibility

ORCA

Long-term average gain measurements

- Hearing aids
 - 12 modern HA:s
 - Mic, OMNI
 - MPO, MAXIMAL
 - Expansion, OFF
 - VC, OFF
 - Feedback reduction, OFF
 - Other sig. proc., OFF
- Programming
 - default prescription

- Equipment
 - Equinox HIT440, IA
 - TBS25 test box, IA
 - 711 coupler, GRAS
 - Mic (ref./meas.), GRAS
- Measurements
 - Pre-conditioning 30 seconds
 - Long-term average 30 seconds

"Classification of steady state gain reduction produced by amplitude modulation based noise reduction in digital hearing aids" by Hoetink AE, Körössy L, and Dreschler WA. Int J Audiol, 48, 2009, 444-455.

Method

- Measurement signals
 - ISTS (ISMADHA draft)
 - ICRA1 (stationary speech-weighted noise)
- Variables
 - SNR in the input singal (8 different)
 - "Speech", +6 dB, +3 dB, 0 dB, -3 dB, -6 dB, -9 dB, -12 dB
 - Sound pressure level (fixed speech level)
 - 62 and 75 dB SPL (ANSI S3.5)
 - Audiogram (3 different)
 - KS100, Flat50, N4

Audiogram

Gain reduction

Reduction contours

Short-term average gain reduction – Method

- Hearing aid
 - 12 modern HA:s
 - Mic, OMNI
 - MPO, MAXIMAL
 - Expansion, OFF
 - VC, OFF
 - Feedback reduction, OFF
 - Other sig. proc., OFF
- Programming
 - default prescription
- Equipment
 - Recordings sound card

- MATLAB processing
- TBS25 test box, IA
- 711 coupler, GRAS
- Mic (ref./meas.), GRAS
- Measurements
 - Pre-conditioning: 30 s
 - Short-term average (1/3-oct):
 125 ms
 - Updated every 40 ms
 - Hagerman sentences in ICRA1 noise
 - KS100 audiogram

the speech signal without noise.

Other ways to illustrate what we have seen in the movies?

ORCA*Europe* Change in reduction when longterm average NR is subtracted

Change in reduction when long-term average NR is subtracted. "Spectrogram"

Summary

- Large differences in how the various NR systems work!
- The short-term aspects are needed to describe the noise reduction systems (and they most likely have perceptual relevance)
- Future work
 - Evaluate the systems with hearing-impaired listeners...

Thank you for your attention!

Karolina.Smeds@orca-eu.info www.orca-eu.info