A New Objective Intelligibility Measure For Time-Frequency Weighted Noisy Speech

Cees Taal¹, Richard Hendriks¹, Richard Heusdens¹, Jesper Jensen² 7-1-2010

¹ Delft University of Technology, Signal Information & Processing Lab, Delft, the Netherlands.

² Oticon A/S, Smørum, Copenhagen, Denmark.

Introduction Background

Introduction Motivation

• In this research, the focus is on time-frequency (TF) weighted noisy speech

• e.g., single-channel noise reduction, speech separation etc.

• Why?

- Most conventional objective measures are not reliable for this type of processing
- Such a reliable measure is desired in the field of noise-reduction

We propose a new objective measure which,

- •... shows high correlation with intelligibility of noisy and TF-weighted noisy speech
- •... is simple (very few parameters)
- •... based on short-time segments (~400 ms)

Method

- First, TF-decomposition is applied to clean and processed speech
 - 15, 1/3 octave bands, by merging short-time (~25 ms) DFT-bins
 - Bands cover a relevant frequency range for speech intelligibility (~150-4500 Hz)
- Notation:
 - Band index: j, time index: m
 - Clean speech TF-unit: $X_i(m)$, processed speech TF-unit: $Y_i(m)$

Method

Intermediate Intelligibility Measure

- Model depends on intermediate intelligibility measure: d_i(m)
 - $d_i(m)$ depends on short segments (~400 ms) of $X_i(n)$ and $Y_i(n)$, per band
 - Where $n \in \{m N + 1, m N + 2, ..., m\}$ and N=30
- Before comparison, Yj(n) is first modified as follows:
 - Normalization: Compensate for local energy differences
 - Clipping: To make sure speech is inside range relevant for intelligibility

Normalization

Method

TUDelft

 Y_j(n) is normalized such that its energy equals the energy of X_j(n):

$$\alpha Y_{j}(n) = \frac{\sqrt{\sum_{n} X_{j}(n)^{2}}}{\sqrt{\sum_{n} Y_{j}(n)^{2}}} Y_{j}(n)$$

Clipping

Method

• aY_i(n) is clipped to lower-bound the signal to distortion ratio to -15 dB which gives $Y'_{i}(n)$

$$SDR(A,B) = 10\log_{10}\left(\frac{A^2}{(B-A)^2}\right)$$

Comparison

Method

TUDelft

 d_j(m) equals correlation coefficient between clean and processed speech short-time segments

$$d_{j}(m) = \frac{\sum_{n} (X_{j}(n) - \mu_{X}) (Y'_{j}(n) - \mu_{Y'})}{\sqrt{\sum_{n} (X_{j}(n) - \mu_{X})^{2} \sum_{n} (Y'_{j}(n) - \mu_{Y'})^{2}}}$$

Method Eventual outcome

Eventual outcome is defined as the average over all intermediate intelligibility measures:

$$d = \frac{1}{JM} \sum_{m,j} d_j(m)$$

Subjective Data

- Subjective data origins from Kjems et al. (2009)
 - Speech is degraded with additive noise
 - Noisy speech is processed with a technique called 'Ideal Time Frequency Segregation' (ITFS), Brungart *et al.* (2006)
- In total 167 different conditions are evaluated
 - 3 SNRs
 - 4 noise types
 - Various settings of ITFS-algorithm

Experiment

- Proposed method is compared with three reference objective measures:
 - DAU: Dau auditory model (Dau et. al, 1996)
 - NSEC: (Boldt & Ellis, 2009)
 - CSTI: Normalized covariance based STI (Goldsworthy & Greenberg, 2006)
- All these measures are promising candidates for TF-weighted noisy speech

Results

• Figure of merits:

• RMSE (σ)

Correlation Coefficient (ρ)

	PROPOSED		CSTI			
)				
_	80		80			
ive(%)	60	ive(%)	60			
ubjecti	40		40			
ഗ	20	S	20			
	0.3 0.4 0.5 0.6 0.7 0.8 Objective		0 0.2 0.4 0.6			
Objective			Objective			
	DAU		NSEC			
	DAU 100)	NSEC			
	DAU 100 80		NSEC 100 80			
tive(%)	DAU 100 80 60	tive(%)	NSEC 100 80 60			
subjective(%)	DAU 100 80 60 40	subjective(%)	NSEC 100 80 60 40			
Subjective(%)	DAU 100 80 60 40 20	Subjective(%)	NSEC 100 80 60 40 20			
Subjective(%)	DAU 100 80 60 40 20	Subjective(%)	NSEC 100 80 60 40 20 0 0 0 0 0 0 0 0 0 0 0 0 0			
Subjective(%)	DAU 100 60 40 20 0.2 0.4 0.6	Subjective(%)	NSEC 100 80 60 40 20 0.2 0.4 0.6 0.8			

	PROP	CSTI	DAU	NSEC
σ	10.2%	21.8%	16.4%	17.1%
ρ	0.95	0.73	0.86	0.84

Results

- Reference objective measures underestimate intelligibility of noisy unprocessed speech
- Proposed method good results with both noisy and TF-weighted noisy speech

- Noisy unprocessed speech
- TF-weighted noisy speech

Conclusions

- A new objective intelligibility measure was presented, based on an intermediate measure for short time-frequency regions (~400 ms)
- The proposed method:
 - ...showed high correlation with TF-weighted noisy speech
 - ...showed better performance then three other reference objective measures
 - ... does not underestimate the intelligibility of the unprocessed noisy speech, which was the case for the three reference objective measures
- Matlab code available: http://www.ceestaal.nl/stoi.zip

Experimental results

Subjective Data Ideal Time-Frequency Segregation

- Binary time-frequency weighting is applied to noisy speech (Ideal Binary Mask, IBM)
- Mask set to `1' when local SNR within TF-unit exceeds user-defined local criterion (LC):

$$IBM(f,t) = \begin{cases} 1, & \text{if } \frac{\text{clean}(f,t)}{\text{noise}(f,t)} > LC\\ 0, & \text{otherwise} \end{cases}$$

Subjective Data Ideal Time-Frequency Segregation

• In total 167 different conditions are evaluated:

- Speech shaped noise, café noise, car interior noise, noise from bottling factory hall
- 8 different LC-values

ŤUDelft

• 3 SNRs: 20% SRT, 50% SRT, -60 dB

