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Intelligibility Prediction at Oticon

Internal Test of Hearing Aid Prototypes

Setup:
* Frontal target speaker and two ISTS maskers
in a room with little reverberation.
Hearing Aids:

* Two prototypes: A in 4 settings, Bin 2
settings.
* Fitted to the subjects.

* 14 hearing impaired subjects.

Clean and noisy/processed signals were also
recorded with a HATS.

Speech

3:5

Masker




|
William Demant/

Key Takeaways

There exists a binaural version of STOI

These work well for some applications

Most of the STOI-family is freely available and easy to use
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What is the STOI Measure?!?

The Short-Time Objective Intelligibility Measure

x (Clean speech)
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C. Taal et al., “An Algorithm for Intelligibility Prediction of
Time—Frequency Weighted Noisy Speech,” TASLP, 2011.
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[TABLE 1] PER-CONDITION PERFORMANCE CRITERIA FOR THE Cl INTELLIGIBILITY
DATABASE. THE NUMBERS IN BOLD REPRESENT THE BEST ATTAINED PERFORMANCES

(STATISTICALLY INDIFFERENT) AMONG ALL TESTED INTRUSIVE AND NONINTRUSIVE

W hy STO I ? ! ? — NONENHANCED

ALL (NOISE/REVERB) ENHANCED
Tiago H. Falk, Vijay Parsa, Jodo F. Santos, Kathryn Arehart, Oldooz Hazrati, METRIC p Popear Psig E-RMSE  p Popear Psig  ERMSE  p Pspear  Psig  £-RMSE
Rainet Huber.'JamesIM. Kates.'and Susan'scollie NCM 068 074 087 9.03 096 093 0.93 841 0.47 068 077 10.33

STOI 0.81 0.76 0.89 7.05 097 096 0.97 06 0.66 0.69 0.92 3.82

Objedive Quality PESQ  -0.09 0.01 -002 2685 -025 04 014 2614 —009 021 -0.02 2389

PEMO-Q 0.67 053 0.68 15.68 072 08 069 15.67 038 053 044 1352

d Intelligibili
an Inte Igl I Ity P563 0.05 038 033 2359 076 06 078 11.77 -079 0 -0.43 25.23
ModA 078 0.59 078 16.88 082 076 08 13.59 -0.13 -0.17 -0.07 18.42

PfEdiCtion fOr UserS Of SRMR 049 053 068 1841 093 089 092 96 -0.35 -0.03 -0.37 23.16
Assistive Listenind Devices EEs s Sy EEuswEr = m el

|EEE SIGNAL PROCESSING MAGAZINE [114] MARCH 2015

[TABLE 2] PER-CONDITION PERFORMANCE CRITERIA FOR
THE HA NONLINEAR FREQUENCY COMPRESSION QUALITY

90 ‘ ; . : DATABASE. THE NUMBERS IN BOLD REPRESENT THE BEST
¢ Clean A ATTAINED PERFORMANCES (STATISTICALLY INDIFFERENT)
80| ¢ Noise only ‘A 1 AMONG ALL TESTED INTRUSIVE AND NONINTRUSIVE
7o L| v Reverb Only | ALGORITHMS.
= Noise-Plus—Reverb
g 60 |- | 4 Enhanced v ° 1 METRIC P P spear Psig £-RMSE
}’ =l & | NCM 0.67 0.67 0.89 7.46
E v L] STOI 0.77 0.67 0.92 2.24
2 40+ A 1 PESQ 0.62 0.56 0./79 5.73
5":3 s0l v HASQI 0.71 0.71 0.93 71.67
- HASPI 0.83 0.72 0.81 9.9
20 - Y 1 PEMO-Q 0.67 0.6 0.79 5.06
1ol "/a | PEMO-Q-HI 0.89 0.71 0.92 1.83
0 . »., L P563 -0.27 -0.38 -0.33 23.25
2 HE 1 . 25 £25 £ ModA 0.52 0.48 0.54 8.86
(@) SRMR 0.49 0.59 04 17.06

SRMR-HA 0.51 0.58 0.46 14.39
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Why STOI?!?

Speech Intelligibility Evaluation for Mobile

Phones

b .
Soren Jorgensen'?, Jens Cubick!, Torsten Dau')

Y Centre for Applied Hearing Research. Department of Electrical Engineering. Technical University of Denmark.

2800 Kgs. Lyngby, Denmark
? Oticon A/S, Kongebakken 9, 2765 Smgrum, Denmark. jr@oticon.com

Table 1. Root mean squared error (RMSE) in dB between mea-
sured and predicted SRT7o from the three mobile phones in the
three noises considered in the present study.

SSN Pub Traffic
SEPSM 0.58 8.2 4.5
ESII 2.2 5.8 1.9
STOI 1.0 0.46 2.2

8 O Data SSN Pub Traffic
6l ® sEPSM
_ ® LSl L4 0@:
o 4- & srtol 04] Y ¢
Z gt
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Eﬁ ok ?- . R o il .¥ o
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Ref RefBP A B & A B E A B C

Figure 6. SRTy, obtained from the perceptual psychometric functions (open squares). for all the conditions with SSN (left panel). with
Pub noise (middle panel), and with Traffic noise (right panel). The vertical bars denote one standard error. Predictions from the sEPSM
are indicated by the filled black squares, predictions from STOI are shown as filled black diamonds, and predictions from the ESII are

indicated by the filled gray circles.
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Why STOI?!?

Comparison of predictive measures of speech recognition after
noise reduction processing

Karolina Smeds,? Arne Leijon, Florian Wolters, Anders Hammarstedt, Sara Basijo,
and Sofia Hertzman
ORCA Europe, Widex AlS, Maria Bangata 4, SE-118 63 Stockholm, Sweden

Only one of the predictive measures, CSII (Kates and
Arehart, 2005), correctly predicted the effect of the currently
tested noise reduction algorithms on the speech recognition
threshold within both groups of listeners. In general, measures
using correlation between the clean speech and the processed
noisy speech, as well as other measures that are based on short-
time analysis of speech and noise, seemed most promising.

TABLE I. SRT prediction errors for two groups of listeners, 20 with
impaired hearing (HI) and 10 with NH. The median prediction error was cal-
culated across listeners, and the result with the largest magnitude among the
three noise reduction algorithms is shown. Bold numbers indicate that the
prediction errors were significantly (p < 0.05) different from zero for at least
one noise reduction algorithm, as indicated by the Friedman test described
in Sec. 111 B 2. Underlined numbers indicate that the predicted benefit was
also in the wrong direction compared to the measured benefit and that this
discrepancy was statistically significant (p < 0.05), as indicated by the corre-
lation test described in Sec. 111 B 2.

Prediction error (dB)

Measure Reference HI NH
Sl ANSI (1997) 38 2.5
ESII Rhebergen et al. (2006) 6.4 7.0
STSII This paper 1.2 2.

Glimpses Cooke (2006) 1.4 —E
fwSNRseg-a Ma et al. (2009) -1.6 4.1
fwSNRseg-b This paper 1.0 4.8
STOI Taal et al. (201 1a) —).6 -1.6
CSII Kates and Arehart (2005) 0.9 0.4
sEPSM Jorgensen and Dau (2011) -1.2 2.0

mr-sEPSM Jorgensen et al. (2013) -1.2 -5.0
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Why STOI?!?

* Easy and free to use:
* No patent, license, etc.
* Available on Cees Taal’s website.
* 188 lines of MATLAB in one .m file.
* Requires no toolboxes.
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A bit of Perspective

Clean speech & noise Clean speech & degraded speech Degraded speech
=
E Type 1M Type 2M Type 3M
= 2 input signals: 2 input signals: I input signal:
E - Clean speech - Clean speech -Degraded speech
g - Clean noise - Degraded speech
E
-
- Type 1B Type 2B Type 3B
r 4 input signals: 4 input signals: 2 input signals:
E - L & R clean speech - L & R clean speech - L & R degraded speech
= - L & R clean noise - L & R degraded speech

S— ——
e ~——

Intrusive Non-intrusive
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The Binaural STOl Measure*

* Base idea: Combine the STOI measure with the equalization cancellation model.
1. Combine left and right ear signal
with EC stage.
2. Compute STOIl measure of output.

* Find optimal EC-parameters by sweeping
different values.

* Handle internal noise by computing
average STOI across many realizations.

* A. H. Andersen, et. al., “A binaural short time objective intelligibility measure for noisy and enhanced speech,” Interspeech, Dresden, Germany, Sept. 2015.
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The Binaural STOl Measure

Short-ti _|fk(ffq
X ort-time . . o v
HET Modified . .0 .
(1/3 octave) [T Envelope [—3»| Short-time
_IF= EC-stage _,. extraction _,_ segmentation
Short-time 4|—> g
Xr _) .
DFT | | 4,
Xk,m
Sh i Ak([
ort-time m
DFT | G I—» N Yiem -
odified |—S Short
(1/3 octave) [ ) Envelope e ort-time
: extraction | G segmentation
y : Short-time f: EC-stage [—™ RN
' DFT e

Correlation
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Average

Select y and 1 for each 1/3 octave band, ¢, and each time unit, m, such as to maximize output
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The Deterministic Binaural STOlI Measure

* The output of the measure is stochastic

because the EC-stage adds internal noise to
parameters.

* First version of BSTOI used Monte Carlo

simulation to find expected value of the output.

» Second version computes the expectation
analytically:

* Fully deterministic predictions of
intelligibility.

* Lowered computational cost.

EA [(Xq,m = lf'l'xq,'m )T(yqlm_ 1#’}’1},111 ):I —

2817 —28. 1 203
(e LN T rmq!mryq_m)e 8
2 L O
F T oAag/2 —w oA, /2
FBa . o Yigion o Plig,m —2€ SR/ T/ S

{ (e’ﬁllq‘m +efﬁr;q‘m) Re [cyq‘m Efj‘”]
G RC [e_ijclq‘m:l (eﬁlqul +e_ﬂryq.m) }

H 72&)20'% T —j2wT
+2(Re {Cmq'm cyq_m] +e TRe|c], .. Cyqm€ :

where:
(0 () e 7(?‘5
(1 ;
lxq _[‘X‘q m—N412 " ‘X‘i‘:m}T_IZ jtr
k=m-—-N-+1
(r) - X(ng
rmq _[Xq m—N-+1 Y‘E‘TT?R]T_IZ j:;
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The Deterministic Binaural STOlI Measure

* The DBSTOI measure was shown to I

correlate well with speech intelligibility

in many binaural listening conditions. =
* Most significant inaccuracies were T

found at low SNRs for conditions with 3

multiple or distributed interferers. % o |

a e
Isotropic noise ,,
02 ===
O -

-40 -20 0 20
SNR [dB]
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4 0.4

The Deterministic Bina

0.2,
A look under the hood
0.
1
L .
7 ] = v[dB]  T[ms] 20 - [dB]
Short-ti —l i
ort-time :
X) —> : 2
DEY —1 =] Modified k’"f; Xq,m .
(1/3 octave) [T > Envelope 3| Short-time f—
_IF: EC-stage |——] extraction »| segmentation | | f Xg )
Short-time g -
X, = . C .
DFT : |)2 )
k,m . . &
= Corrf&;‘la.t lo? — >| Average >
; L >l coefficient | i
yi Short-time ! Vi, ,31
DFT '| -E Modified m .
(1/3 octave) Envelope »| Short-time
Sh . _F: EC-stage extraction > segmentation
N ort-time =
Y DFT : | 5 ¥
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Select y and t for each 1/3 octave band, g, and each time unit, m, such as to maximize output
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The Modified Binaural STOl Measure

DBSTOI finds EC paran

Bias term can be math

To remove bias, we in¢

Loosely corresponds t

S
o0

O
o)

MBSTOI [-]

<
o

—
S

-40 -20 0
SNR [dB]

20

ltions.
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The Modified Binaural STOl Measure

Dataset 1 (Andersen et al.) 100 -

* Danish matrix sentences from front.

* SSN from one of ten directions in

horizontal plane.
* 10 NH listeners.

* Simulated anechoic with HRTFs.

* (10 listeners) x (10 conditions) x (6
SNRs) x (3 reps) = 1800 sentences.

Measured Intelligiibility [%]

90

80

70

60

50

40 -

30

20

10

S S Il
s ®
.o ® SSNSN_ .
® SSNSN_ .
. e SSNS N,
o P ® SSNSN,-
y » SSNS N,
oW SSN SN
‘.1 SSN'S,N, -
,*'. SSN S Ngy
- » SSNSN,,.-
’) ® SSNSN. -
0.2 0.4 0.6 0.8 1
MBSTOI
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The Modified Binaural STOl Measure

100

Dataset 2 (Andersen et al.)

* Danish matrix sentences from front.

* SSN or bottling factory hall noise (BFHN)
from one of 3 directions.

* 14 NH listeners.
* Simulated anechoic with HRTFs.

* (14 listeners) x (9 conditions) x (6 SNRs) x
(3 reps) = 2268 sentences.

Measured Intelligiibility [%]

90
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70
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40 -

30

20

10

Fm . - e S o Em = -

SSNS N, . +IBM

SSN SN, - + IBM
SSN S N, + IBM

BFHN SN -
BFHN SN -
BFHN SN, -

BFHN S N _,, .-+ IBM

BFHN S N-+ IBM

o BFHN S N, -+ 1BM

0.2

0.4

MBSTOI

0.6

0.8
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The Modified Binaural STOl Measure

Dataset 3 (Andersen et al.)

* Danish matrix sentences from front.

* SSN or ISTS noise. Isotropic or multiple
sources.

* Beamforming as used in hearing aids.
* 10 NH listeners.
* Simulated anechoic with HRTFs.

* (10 listeners) x (10 conditions) x (6
SNRs) x (3 reps) = 1800 sentences.

Measured Intelligiibility [%]
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SSN S N, + BF

SSN SON{J_115,180} *+BF

ISTS SON{J_HSA 80} + BF

SSN SON{30,130} + BF
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0.4 0.6
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0.8
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The Modified Binaural STOlI Measure

Dataset 4 (Kuklasinski et al.) 100 T T T
90 . pre
* Danish matrix sentences from front. - e
'_
* |ISTS sources at +90°, +135°, 180°. = 70p ,’
£ oo
* Reverberant cellar BRIRs. 2 60 o
* Direct-to-reverberant ratio modified to £ .,
make reverberation more or less g a0 ie ®  Unproc. front mics
. a / ® Unproc. left front mic
detrimental. S aob ® Bilateral MVDR (Kuklasinski et al. )
= ‘I ® Bilateral MWF (Kuklasinski et al.)
12+ 1 1 1 1 L @ ® Binaural MVDR (Kuklasinski et al.)
* Variations of hearing aid noise reduction. 20 e it
. . /. Binaural MVDR (Braun \& Habets)
* 20 NH listeners. e L7 Binaural MWF (Braun \& Habets)
X . . 0 | | | | |
* (20 listeners) x (8 conditions) x (4 DRRs) x 0 0.2 0.4 0.6 0.8 1

(5 reps) = 3200 sentences. MBSTOI

A. Kuklasinski et al., “Maximum likelihood PSD estimation for speech enhancement in reverberation and
noise”, IEEE Tran. on Audio, Speech and Language Processing 24 (9), 2016.
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The Modified Binaural STOl Measure

Dataset 5 (Andersen et al.)

* Danish matrix sentences from front.

* SSN. Mixture of isotropic and point source
at either 0 ° or 115°.

* 8 NH listeners.

* Simulated anechoic with HRTFs.

* (8 listeners) x (7 conditions) x (8 SNRs) x (3
reps) = 1344 sentences.

Measured Intelligiibility [%]

100

90

80

70

60

50

40

30

20

10

SSN S N,

SSN 2/3 SN, + 1/3 SN
SSN 1/3 SN, + 2/3 § N

SSN SN ¢4

SSN 2/3S N

0 'I1ISO

SSN 1/3S_N

SSNSN_..

0 180

0 IS0
0 IS0

+UBS N,

+ 238N e

MBSTOI

0.6

0.8

20



Q

William Demant/

The Modified Binaural STOlI Measure

100_ - am Cr s s o o o=
90 | o
80 -

70

D1 D> Ds Dy Ds 60 - /
RMSE 7.34% 6.92% 7.07% 6.30%| 7.69%
Kendall’s Tau 0.887 0.858 0.838 0.906 0.893

Pearson Correlation 0.981* 0.974* 0.973* 0.975* 0.987*

50 [ {

40 7

Measured Intelligiibility [%]

30
20

10_ P

0 0.2 0.4 0.6 0.8 1
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Intelligibility Prediction at Oticon

Internal Test of Hearing Aid Prototypes

Setup:

* Frontal target speaker and two ISTS maskers
in a room with little reverberation.

Hearing Aids:

* Two prototypes: A in 4 settings, Bin 2
settings.
* Fitted to the subjects. Minor amplification
provided for normal hearing subjects.
Subjects:

* 14 hearing impaired subjects.
* 14 normal hearing subjects.

Clean and noisy/processed signals were also
recorded with a HATS.

B )icasured
I Predicted

|]

Hearing impaired

Normal hearing

R
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Thank you




