Mask-assisted speech enhancement for binaural hearing aids

ELOBES2019 workshop – 12 January 2019

Mike Brookes, Leo Lightburn, Alastair Moore, Patrick Naylor & Wei Xue
Outline

• Motivation: Ideal Binary Mask (IBM)
 – Intelligibility model for IBM-masked speech
 – STOI-optimal binary mask and its estimation

• Mask-assisted MMSE enhancement
 – Single-channel performance

• Binaural Enhancement
 – Alternatives for Metric reference signals
 – Bilateral versus Binaural beamforming
 – Effect of an improved mask

• Summary
“Ideal” Binary Masks (IBM)

- Additive noise

- Apply Binary Mask
 - Keep only time-frequency cells with local SNR > “local criterion” threshold (LC)

- An “oracle” mask has access to both the clean speech and the noise
 - In practice, the mask must be estimated from the noisy speech alone
two independent sources of information: [Kjems et al 2010]

1. Noisy speech signal
 Distorted by the mask
2. Noise-vocoded signal
 Noise modulated by the mask

- Component 1 is intelligible for $SNR \geq -5\text{ dB}$ provided mask is not too sparse ($SNR > LC - 5\text{ dB}$)
 - vertical bar on figure
- Component 2 is intelligible if (a) high speech power \rightarrow mask on ($SNR > LC - 5\text{ dB}$) and (b) low speech power \rightarrow mask off ($SNR < LC + 20\text{ dB}$)
 - diagonal bar on figure

(1) The benefit of binary masking comes entirely from component 2
(2) The mask should reflect clean speech energy (not the local SNR)
STOI-optimal Binary Mask

- The STOI-optimal binary mask (SOBM) maximizes the STOI of masked speech-shaped noise (SSN)
 - Depends only on the clean speech
 - WSTOI weights time-frames by estimated speech information
- Train DNN to estimate the mask from noisy speech
 - Trained on a range of noises at a range of SNRs
 - Error weighting: (a) freq band importance, (b) WSTOI sensitivity
 - DNN output $\in [0, 1]$ corresponds to probability that mask = 1
Mask-assisted Enhancement

- LogMMSE enhancer assumes zero-mean complex Gaussian speech and noise STFT coefficient distributions
 - Gain function depends on posterior SNR, γ, and prior SNR, ξ
- Map mask to Gaussian Mixture Model (GMM) distribution for speech power
 - Mapping depends on frequency band and estimated SNR
 - Denormalize by estimated speech level in the frequency band
 - Divide by estimated noise power to get GMM for prior SNR, ξ
Single-channel Enhancement

- Raw speech has acceptable intelligibility @ SNR=SRT_{Raw}
- Enhanced speech has the same intelligibility @ SRT_{Raw}+\Delta SRT

- Can regard \(-\Delta SRT\) as increased tolerance to noise
- Mask-assisted enhanced has \(\Delta SRT\) of \(-1.5\) dB
- In contrast, LogMMSE enhancer has \(\Delta SRT\) of +1 dB

- PESQ tolerance to noise improves by >5 dB for both enhancers at SNR_{Raw} > -5 dB
 - Note: PESQ unreliable at low SNRs.
Binaural Enhancement

- Classroom full of noisy children. Highly non-stationary.
- Talker = loudspeaker, Listener = KEMAR head/torso simulator.
- MVDR beamformers:
 - Bilateral (2 mic): preserves spatial cues of noise sources
 - Binaural (4 mic): higher SNR, collapses noise to target direction
- Enhancement applies a time-frequency gain:
 - Common gain preserves binaural cues
 - Max function \approx “better ear”
Metric Reference Alternatives

- MBSTOI needs a clean speech reference:
 - Upper plots use reverberant clean speech as reference.
 - The green o shows the Δ median-SRT @ 50% for 17 HI listeners.
 - Lower plots use the early room response (50 ms) to create the reference.

- When reverberant clean speech is used as the reference:
 - MBSTOI predicts small gains that do not match reality
 - Wrongly predicts that bilateral beamformer is better than binaural

- When early part of room response is used to create the reference:
 - MBSTOI correctly predicts ΔSRT for both bilateral and binaural beamformers
Bilateral versus Binaural

- Binaural (solid lines) is always better than bilateral (dashed) for both PESQ and MBSTOI
- Enhancement, ♦, improves PESQ and MBSTOI for $SRT_{\text{Raw}} > 2.5$ dB but degrades them below this.
 - Worse than the single-channel results

- Measured performance, ●♦, of HI listeners shows that enhancement, ♦, degrades median SRT of binaural beamformer, ●, by 1 dB.
Effect of Better Mask

- Effect of using a better mask (* plot)
 - Fix the mask as the one determined for +12 dB SNR
 - MBSTOI declines more slowly with decreasing SNR
 - ΔSRT_{MBSTOI} continues to improve as SNR decreases
 - PESQ is improved at all SNRs

- Mask-assisted MMSE enhancement can give excellent results with a good enough mask
Summary

• Mask estimation
 – Aims to identify time-frequency cells that have high speech energy rather than high SNR (maximize STOI of vocoded noise)
 – Depends only on the target source and is single-channel

• Clean-speech reference for metrics
 – Metrics should use a non-reverberant clean-speech reference
 – Useful to express metric in terms of ΔSRT

• Binaural versus Bilateral
 – For noise without dominant point sources, binaural \gg bilateral
 – Better SNR outweighs spatial cue preservation

• Mask-assisted LogMMSE enhancement
 – Can give significant gains but needs a better mask estimator
References