Research Report on ESRC project RES-000-23-0354

“Modelling Spreading Activation and default inheritance in Word Grammar”
· Background 

This project is the second of a series of three projects. The first, Software for an inflectional network, was funded by the ESRC and completed in July 2002; the third, Modelling perception and production in Word Grammar, is currently being considered for funding by the ESRC. The three projects are intended to cover the same ground as an unsuccessful proposal in 2000 to the ESRC, Parsing by spreading activation.

The overall aim of the series is to build a computer model (now called WGNet++) of how humans use language. The project can be seen as an exercise in computational psycholinguistics (Crocker 1996), but unusually the focus is not only on procedures but also on the underlying theory of grammar, Word Grammar (WG; Hudson 1984; Hudson 1990; Hudson 2003).

The first project produced a Windows interface for constructing, editing and displaying inheritance databases and some sample databases illustrating the WG approach to morphology. The current project improved and extended the interface and produced new databases including most of (English) regular and irregular verbal morphology and additional data gathered from machine-readable sources. In the third phase it is hoped to bring the software to the point where it is able to model grammatical processing by default inheritance and spreading activation so it can be used to test the specific claims contained within the existing databases as well as the more general theoretical claims of WG.

In WG, grammatical knowledge (like more general knowledge) is represented in a network of concepts arranged in an inheritance hierarchy and related by asymmetric binary functions between concepts (both specific and generic). The relevant theoretical claims are that this network structure provides everything that is needed for the representation of linguistic knowledge and, with the addition of an algorithm controlling default inheritance and allowing activation to spread through the network, provides equally for linguistic processing. This view is in contrast with one current in much work in linguistics that holds that knowledge of language consists of at least two distinct modules: a lexicon (a set of words and word classes) and a grammar (a set of rules or procedures for the ordering and manipulation of words).

WG's view of grammatical structure has a number of consequences in derivational morphology. Uncontroversially, a word and its form are represented in separate, related concepts. Further, inflected forms are themselves represented in separate concepts, related to the (uninflected) base form. The properties of (regularly) inflected forms are associated with an inflectional class (for example past tense verbs have the property that the inflected form consists of two parts, one taking the realisation of the base form and the other inheriting its realisation from the morpheme {ed}). 

Irregularly inflected forms override the regular pattern: whereas the inflected form of past WALK can be inherited from the general model, that of past RUN is simply listed in the lexicon. However, in some cases only some of the regular properties are overridden (the /t/ at the end of {kept} is the same as the /t/ at the end of {walked}), and in other cases the irregular forms comprise (more or less) regular subclasses ({caught}, {taught}, ...); in the default inheritance structure of WG, these subregularities are easily represented in intermediate classes. The subregularities are generalisations over classes of base forms (bases like {swing}, {wring} etc commonly have past inflections like {swung}, {wrung} etc) and over classes of inflected forms ({taught}, {caught} etc are the past participle inflections of {teach}, {catch} etc). This is consistent with findings in eg Bybee and Moder (1983) and Bybee (1995) that both irregularly inflecting and irregularly inflected forms can form lexical categories, and also helps explain the productivity of some irregular inflections ({drag}~{drug}).

· Objectives

The original proposal set out the following objectives:

• To become familiar with the existing code and gradually adapt it to make WGNet more transparent in its treatment of relations and inheritance. 

• To extend WGNet so as to allow a researcher to define a processing query such as 'what is the meaning associated with the letters <d, o, g>?' This will create the required token nodes with minimal links to the existing database. 

• To add spreading activation to WGNet by allowing the user to set the initial activation level for each node (or to set this on the basis of a database of frequencies), and also by providing a formula to control the spread of activation to other nodes. 

• To add a visual display of the progress of activation during a query session; the activation will be shown on screen at a convenient speed. 

• To experiment with equations for spreading activation in order to reduce the range of possibilities, and if possible to find one which replicates at least some of the experimental findings quoted by Levelt (and similar findings in the comprehension literature). 

• To populate the database with sufficient morpho-lexical and syntactic information to allow thorough testing of the morphology and some pilot testing of the syntactic parsing machinery. At least some of this information will be input by hand, though it will also be possible to import some simple lexical information from a large list of words with frequencies which will be supplied by the Survey of English Usage. 

In the event only the first and last of these were successfully met. The programmer, Dr Williams, had a steep learning curve in familiarising himself with both the programming environment and the existing code. He had to learn a great deal about the Windows API (programming environment) as well as the specifics of the code that had been produced in the first phase by his predecessor, Sean Wallis. Consequently, he spent approximately 3 months on “hands-on” learning of the Windows interface, while tackling well-defined improvements to the program. Fortunately Sean Wallis was available to help and ESRC had provided funds to pay for a month of his time, but even so it was approximately five months before Dr Williams was ready to make significant independent changes to the program. 

The problem of handing over between two programmers was caused in part by the splitting of the programme into three projects as recommended by the ESRC. This had the result that the original programmer could not be retained to work on the second part of the programme, which in turn meant that (in spite of good documentation of the existing code) the new programmer needed time to work his way into the existing code. This problem might, perhaps, have been foreseen, though it is difficult to imagine what might have been done to circumvent it. 
The programming work that was carried out included a fundamental upgrading of the code. The original WGNet code, written in Phase 1, was developed in a 16-bit environment for older versions of Windows. For compatibility with the current Windows operating system and for future-proofing the software, it was decided to port the code to a 32-bit environment (Microsoft Visual C++). This was also a useful exercise for familiarising the programmer with the existing code.

The code was also somewhat improved, resulting in a much more flexible and user-friendly application which allows basic operations such as selecting, saving and editing of networks through a menu-driven interface. The programmer also tested the code on networks of significant size involving English inflectional morphology, developed by the linguist.

The main challenge in this project, however, turned out to be default inheritance. We had hoped to achieve this already in the first project, but this was not possible for lack of time. When we planned the second project, we assumed that default inheritance would be trivially easy because object-oriented programming languages such as C++ are specifically designed to allow properties of ‘objects’ (general categories) to generalise. However it emerged, when we considered the problem, that the generalisations allowed by C++ were irrelevant because they had to be built into the code. What we needed was a program which would allow arbitrary generalisation hierarchies to be specified in the database. Moreover, the mechanism that we needed was one in which inheritable default values could be overridden by more specific values; and as our theoretical work developed, we realised that the mechanism would have to create new nodes for the inherited properties. A few months into the current project, therefore, we found ourselves with a task that was much more serious than we had originally anticipated and which had to take priority over our other aims. 

Fortunately we can report significant progress towards this goal. On the theoretical side, we developed a clear and theoretically defensible algorithm for default inheritance (see Appendix 1). On the programming side, we now have a program which allows us to select a node and ask what properties it inherits. The program answers this question in one of two ways: either by opening a dialog box which summarises the inherited properties (and also shows which are blocked), or by opening a separate window which shows all the properties of the selected node, including those that are inherited from higher nodes. (The separate window has only recently been developed so it is less well tested than the dialogue box.)
The properties of a chosen node, whether stored or inherited, form a subset of the total database, all parts of which are connected to the active node. As such this dialog provides for the implementation of spreading activation, which we hope to tackle in the third phase of the programme (see Future Research Priorities).

Meanwhile, the linguist also developed a structural analysis of regular and irregular inflections and populated the database by hand. This meets the last objective and was further productive from the theoretical point of view because the details of the morphological structures assumed in WG had to be worked out fully, in terms of explicit network structures. The databases cover regular and irregular verb and noun inflections and include sub-regularities among the irregular verbs (see background). The database walk_run.dat contains all the structure necessary to derive the uninflected and past forms of the verbs WALK and RUN and serves to illustrate the theoretical treatment of regular and irregular morphology. The database full.dat contains fuller structures for all irregularly inflecting verbs and nouns (the irregular verb classes are largely taken from Quirk et al. 1972), as well as further structures for regularly inflecting words. 

The linguist also used the data to test and develop the interface. Both the structure of the computer database and the functionality and display characteristics of the windows editor have been improved in various ways. Equally importantly, he explored the capacity of the program to deal with very large databases. To do this, he  used Perl to construct large databases containing 3,333, 9,999 and 33,333 lines. WGNetwin++ copes successfully with 10,000 lines but fails with 33,000, though its capactity also depends on the processing capacity of the computer used. For our present experimental purposes a limit of somewhere between 10,000 and 33,000 lines seems adequate, but this is an issue which will need to be addressed in future developments of the program. In anticipation of work using more realistically sized databases, we have already obtained a large file of data extracted from the ICE-GB corpus and the OALD, a machine readable dictionary. The former consists of a list of word-forms, distinguished by their grammatical properties (word class, transitivity etc) and listed with their frequency in the corpus which information will be applied in the spreading activation algorithm. The latter will provide a source for grammatical information to build into the database.

· Methods

Apart from the standard techniques for building and debugging computer programs, the only relevant methods are those used for collecting data for the databases. Quirk et al. (1972) provided a convenient summary of information about irregular verbs and nouns. This data was checked against a number of corpora using regular expression searches. Perl was used to construct sample databases, to fill in predictable areas of data and to check data for consistency and compatibility with WGNet++.

· Results

As mentioned earlier, the main result is a clear theory of default inheritance, which is both theoretically justified and also suited to programming requirements. In this theory (which is described in more detail in Appendix 1), properties are inherited from more general categories cyclically, one level at a time. So if, as in Figure 1, a concept A is-a (inherits from) B which in turn is-a C, A inherits the properties of B first and those of C only later.

[image: image1.wmf]A

B

C


Figure 1
An important consequence of this is that where a concept inherits from two directions at the same time conflicts between inherited properties are resolved according to how many generations removed they are from the token in question. Where an existing (already inherited) property is more specific than or in contrast to a candidate property to be inherited the candidate property is overridden. In a case of multiple inheritance like Figure 2, where A is-a B (which is-a C) and is-a D (which is-a E), properties of B override those of E and those of D override those of C.

[image: image2.wmf]A

B

C

E

D


Figure 2
We have also developed an account of how default inheritance interacts with spreading activation in language processing; this is the basis for the research which we hope the ESRC will fund in the third phase. Under this account, only tokens (temporary concepts) inherit properties from their parents, since the properties of lexical (permanent) concepts are stable. The inheritance of properties by tokens creates a network of associated relationships and concepts (also tokens), which are unified (where possible) with each other and with other tokens. Our hypothesis is that as activation spreads through this growing network of concepts and relationships, it will build into a grammatical analysis (parse tree).

We have considerably developed the WG theory of morphology, resolving a number of important questions. We have made explicit the treatment in WG of affixation (ennoble, walked) and other morphological processes including vowel change and full and partial suppletion (run~ran, go~went, buy~bought), distinguishing all these from each other in terms of their structures. After considerable discussion, we have developed a satisfactory mechanism for handling the identity or similarity of base forms and the corresponding parts of inflected forms (this was previously assumed to be a simple matter of the relevant base form being shared as a part of the inflected form, but this proved to be inadequate). (See Appendix 2 for more details.)  Finally we have produced a morphological database for English verbs and nouns. 
· Activities

Hudson, Richard. 2004. "A network model of processing in morphology." Paper given to the LAGB, University of Surrey, Roehampton.

· Outputs

· WGNetwin++.exe: a windows executable graphic user interface (GUI).

· walk_run.dat, full.dat: two datafiles for use with the GUI.

· Impacts

The work done on the theoretical development of WG morphology and the treatment of default inheritance and spreading activation will inform a number of journal articles, as well as a book: Hudson (in preparation).

We have had contact with a researcher at the University of Beijing, Liu Haitao, who has downloaded and used the GUI.

· Future Research Priorities

As outlined above, this project forms the second of three phases of a larger programme, the third phase being currently under consideration by the ESRC. In the third phase we hope to develop the software to the point where spreading activation can be modelled effectively. Once this is achieved we believe it will be possible to treat the application as a syntactic parser. The database can then be expanded to include information about meaning and grammatical structure. These priorities are all explained in detail in our grant application for phase 3.
· References

Bybee, Joan. 1995. "Regular morphology and the lexicon." Language and cognitive processes, 10. 425-455.

Bybee, Joan and Carol Lynn Moder. 1983. "Morphological classes as natural categories." Language, 59. 251-270.

Crocker, Matthew. 1996. Computational Psycholinguistics: An Interdisciplinary Approach to the Study of Language. Dordrecht: Kluwer.

Hudson, Richard. 1984. Word Grammar. Oxford: Blackwell.

Hudson, Richard. 1990. English Word Grammar.  Oxford: Blackwell.

Hudson, Richard. 2003. "Mismatches in Default Inheritance." Mismatch: Form-Function Incongruity and the Architecture of Grammar. E.Francis and L.Michaelis, eds. 269-317. Stanford: CSLI.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech and Jan Svartvik. 1972. A grammar of contemporary English. London: Longman.

Appendix 1

An algorithm for default inheritance

The algorithm for default inheritance seems to be quite simple. Assume the situation shown in solid lines in Figure 1, where B and C are in competition because neither is-a the other, and C blocks B entirely. (Explanation of notation: X and C’ are stored entity concepts, with is-a links to concepts Aa and C respectively. Similarly, Rr’ is a relation which is-a relation Rr. Aa and Rr is-a A and R respectively.)

	[image: image3.wmf]A                                 B

Aa

C

X

C

'

R

Rr

Rr'


Figure 3


The question is: what are the properties of a token X* which is-a X?  The algorithm below will calculate the answer automatically.

Algorithm

Build a separate little database for X* in a temporary file (called Temp) which will eventually be integrated into the main database. (Terminology note: a node’s ‘mother’ is the node which it is-a; e.g. X’s mother in Figure 3 is Aa.)

(1) 1. Open a file Temp.

2. For every property of X, which we can call [X R Y], make a semi-copy [X* R* Y*] and two is-a links: [R* is-a R] and [Y* is-a Y], and put them all in Temp.

3. For every property of every mother M of X:

a. build semi-copies as in 2,

b. check them for competitors in Temp – i.e. to check [X* R* Y*], look for [X* S* Z*] in Temp where:

A. S is-a R  - don’t store [X* R* Y*]

B. R is-a S – delete [X* S* Z*] and store [X* R* Y*] in Temp.

4. Repeat 3 for the mother(s) of each mother of each M, and so on up the is-a hierarchy to the top.

5. Integrate the remaining contents of Temp with the main database and delete Temp.

6. Then repeat the whole procedure for each of the token nodes inherited, e.g. Y*.

Notice the following characteristics of this procedure:

· Although relations are also organised in an inheritance hierarchy, it only applies to entities. It doesn’t need to apply separately to the relation hierarchy, because this hierarchy always shadows the entity hierarchy. The only role of the relation hierarchy is to provide a check on overriding by defining the notion ‘same relation’.

· Although all the stored ‘types’ are in inheritance hierarchies, the algorithm does not inherit new properties for them. If it did, the network would rapidly ‘fill up’ with inheritable properties, and generalisation would cease. Instead, the algorithm only inherits properties for tokens (which by definition are not stored). This means that inheritance does not change the permanent database itself (except by adding to it temporary token nodes, which may or may not become permanent). 

· The algorithm is almost monotonic because it works up from the most specific nodes (the tokens). Consequently, the check for competitors, which gives priority to more specific values, will generally meet more general values only after their more specific rivals so it will simply block them. However multiple inheritance means that this may not always be so, which is why the algorithm allows for the reverse situation where a more general value has to be deleted in favour of a more specific one. 

· The search for competitors is computationally very tractable because the competing values are held in the tiny temporary database Temp together with the is-a relations that also need to be checked. 

Appendix 2  

The treatment of morphological structure in WG
A major theoretical issue emerged in the apparently simple relation between forms such as {dog} and {dogs}. Clearly the latter in some sense contains the former, so we assume that {dogs} has two parts. Part 2 is-a the suffix {s}, but what exactly is the relation between part 1 of {dogs} and the form {dog}? One obvious answer is shown in Figure 4. 
	[image: image4.wmf]{dog}

part1

{dogs}

•

X

{s}

part2

s-variant


Figure 4


According to Figure 4, X (the first part of {dogs}) is-a {dog}, and {dogs} is the s-variant of {dog}. The trouble with this analysis is that by inheritance X should itself have (an example of) {dogs} as its s-variant, and this s-variant should have a first part which is-a X, and so on – in other words, the analysis, combined with the logic of default inheritance, produces an infinite regress. No entity E can have a part which is-a E; but this logical contradiction is built into the apparently attractive analysis of Figure 4.


We tried a number of alternatives (including an analysis where the first part of {dogs} is {dog} itself), but our preferred solution invokes the relation ‘realisation’, which links a form to its pronunciation or spelling. The analysis is as shown in Figure 5: the realisation of X (the first part of {dogs}) has the same realisation as {dog}. 

	[image: image5.wmf]{dog}

part1

{dogs}

•

X

{s}

part2

s-variant

•

realisation

realisation


Figure 5



This analysis avoids any inheritance problems and infinite regress, but it also has the great advantage of providing a basis for a revealing analysis of partially changed word-bases such as {ran}. This is because the relation ‘realisation’ is a cover term for all the individual links between a form and its various segments and letters. For example, it picks out the form’s stressed vowel, as well as its first and last segments (i.e. the items which often emerge in ‘tip of the tongue’ states); and other kinds of realisation relation may apply to other segments (or even syllables). A partial hierarchy of realisation relations is shown in Figure 6. 

	[image: image6.wmf]realisation

spelling

main-vowel

first

last


Figure 6



The attraction of this analysis for morphology is that it explains why vowel-change is so common, and provides an analysis in which the irregularity is focussed precisely on the changing vowel. By default, all realisation relations stay the same, but individual elements can change. Here is the analysis for {ran}, showing how it follows the regular pattern in all respects except for the vowel change. In contrast, a suppletive form (e.g. {went}) would have replaced all the default realisations.
	[image: image7.wmf]form

{run}

•

•

1

•

realisation

realisation

ed

-

variant

part1

part2

ed

-

variant

•

•

0

•

main-vowel

part1

part2

/a/


Figure 7

















PAGE  

