Regular Expression Tutorial

1. Introduction

Although there are plenty of per/ hackers and other regular expression users, the amount of decent tutorials and guides on
regular expressions on the 'net remains exceptionally low. Because I still find relatively many questions about regular
expressions, and see how others struggle with them, I decided to write this tutorial. Bear in mind that this is still a work in-
progress.

1.1. Purpose

The purpose of this tutorial is to help the reader on his or her way in the world of regular expressions. The basic concepts
are explained and the largest pitfalls are covered (no pun intended. Well, maybe just a little).

1.2. Notation

Allregular expressions in this tutorial are presented in a monospace font and on a lightgray background with a darkgray
outline. Because it would be very difficult to clearly show spaces in a regular expression, and particularly on a web page,
every space in every regex shown is represented by the ¢ -symbol. The end result then looks like

regular * expression|.

1.3. Examples and Exercises

Most of the examples and all of the exercises were made using GNU egrep. Windows users can get a win32 port of GNU
egrep here. Documentation can be found here. If you don't have GNU egrep on your UN*X box, you might try using your
native implementation; it should be largely compatible.

If the directory where egrep is installed (like /usr/bin, or C:\windows\command) is in your environment's $PATH variable
(%PATHY in Windows), you should be able to invoke egrep simply by typing

S egrep
Usage: egrep [OPTION]... PATTERN [FILE]...
Try “egrep --help' for more information.

Here, the dollar-sign represents the shell's prompt (similar to ¢: \> in Windows), and should not be typed. All command-
line invocation examples show this prompt. Following is the text that should actually be typed, which is always shown in
boldface. The remaining lines contain the command's output.

Basically you give egrep a regular expression and the name of a file. egrep then tries to match the regexagainst each line of
the file. A line is only printed if it matches the regex.

1.4. Copyright and Distribution

This regular expression tutorial is Copyright © 2003 by Kars Meyboom.

This tutorial may be freely reprinted in any medium provided that its content is not altered, presented in its entirety, and
this copyright notice remains intact. All code examples in this tutorial are hereby released to the public domain.

Contact <kars(@kde.nl> for more information.

2. What are they?

A regular expression, usually abbreviated to "regex" or "regexp", describes text patterns. Assume you're looking for a piece
of text that starts with either two, three or four letters 'A’, followed by exactly three letters 'C'. This pattern can be described

with the regex|a{2,431C{3}|

Fromthe above regexone can determine that not all characters are interpreted literally. The accolades (or curly braces, take
your pick) clearly have a special meaning. Characters with such a special meaning are called meta characters. So, regular
expressions have their own particular syntax, and so you could speak of a regex language.

As with most human languages the regexlanguage has many dialects; regexes written for per/ aren't automatically suited
for sed, awk or grep, to name just a few standard UNIX tools.

I've chosen to write all the regexes in this tutorial in the POSIX dialect. This because POSIX is slowly winning terrain in the
world of regexes, and because a fair amount of dialects are similar to it (well, actually it's the other way around). But this
doesn't mean I'll be covering all the features of the POSIX 1003.2 regular expression standard. Another reason for using the
POSIX dialect as opposed to the Perl dialect is because the Perl documentation does a much better job of explaining the
Perl dialect than I ever will. Also, this way you won't be locked into any particular tool's regex extensions. In a way, the
POSIX dialect can be considered the greatest common denominator.

2.1. Usage

A regex by itself does very little. Only by applying such a description of a text pattern to a piece of text does anything
happen. The actual applying is done by a piece of software called a regex engine. The text is searched fromthe start until a
piece of text is found that matches the pattern description (the regex), or until it runs out of text. Such a match is called a
pattern match.

There are basically two ways of using regular expressions. One is by using special-purpose tools that were built
specifically to apply regexes to text, like grep, egrep and sed. The other way is by using the regex capabilities built into a
programming or scripting language. These days, most languages, like C, C++, Javascript, Python and PHP for example,
provide functions or methods that can apply a regexto a piece of text. The code that actually applies regular expressions to
text is called a regular expression engine.

awk and particularly per! don't quite fit either way. Once you get the hang of per/, you'll notice how tightly the concept of
applying a regex to data is integrated into the whole design of peri.

3. Meta Characters

To be able to discuss meta characters, we first have to determine what "ordinary" characters mean to a regex. The regex
does indeed find the "cat" in the text The neighbour's cat pees on my lawn, butalso the "cat" in the

winter catalog. So,regularexpressions work purely on text, and don't look at the semantics. It's important to realise that
the above regexdoesn't mean anything more to the regexengine than a 'c', followed by an 'a’, followed by a 't', where ever it
may be in the text to which the regexis applied.

To get you started, here's a simple example. fruits.txt contains a list of types of fruit, eight total, one per line. Once you've
downloaded the example and saved it, open a console (or DOS box or whatever) and move to the directory where you
saved the file. Once there, type the following:

$ egrep pear fruits.txt
pear

It might not be the most exciting demonstration of regular expressions at work, but if you get the same output, namely
pear, it means you've successfully applied your first regex. Assuming this is your first time, that is.

Another example would be:

$ egrep ea fruits.txt
pear

peach

Slightly more interesting, the regex catches every line that contains ea, re-emphasising that regular expressions have
no regard for semantics.

Another instructional example is:

$ egrep a fruits.txt
apple

orange

pear

peach

grape

banana

You might wonder what's so special about this example. The lesson lies in the last line of the result, banana. Recalling that
egrep prints only those lines that match the pattern, you might wonder how egrep handles banana when applying]j
perhaps you think it matches the line three times, which is more than once, and so the line is printed. The point is that
egrep stops applying the regex as soon as it finds a match. Once it finds the first 'a', it stops searching, prints the line and
moves on to the next.

This particular example illustrates that egrep doesn't care what it matches, or how often, but only wether it matches or not.
Later we'll see examples that do care what or how often is matched. Obviously, these examples won't use egrep.

The last example for this section demonstrates a feature of egrep:

$ egrep -v a fruits.txt
blueberry
plum

The -v option tells egrep to invert the sense of the match. Now only lines that don 't match the pattern are printed. And
indeed, neither blueberry nor plum contains an 'a'.

3.1. Anchors

Using [~|and |$|you can force a regexto match only at the start or end of a line, respectively. So matches only those
lines that start with cat, and only matches lines ending with cat.

A hands-on example that uses the same fruits.txt as in the previous section is the regex:

S egrep “p fruits.txt
pear
peach
plum

As you can see, this regex fails to match both apple and grape, since neither starts with a 'p'. The fact that they contain a
'p' elsewhere is irrelevant. Similarly, the regex only matches apple, orange and grape:

$ egrep 'e$' fruits.txt
apple

orange

grape

Mind the quotes though! In most shells, the dollar-sign has a special meaning. By putting the regexin single-quotes (not
double-quotes or back-quotes), the regex will be protected fromthe shell, so to speak. It's generally a good idea to single-
quote your regexes, so that's what I'll do in the examples fromnow on.

The Windows shell is an exception, mind you. You'll be better off using double quotes in that case.

Moving on, only matches lines that contain exactly cat. You can find empty lines in a similar way with . If

you're having trouble understanding that last one, just apply the definitions. The regex basically says: "Match a start-of-
line, followed by an end-of-line". That's pretty much what an empty line means, right?

Mind you, a regex with only a start-of-line anchor always matches, since every line has a start. The same obviously goes
for the end-of-line anchor. If you don't believe me, just try it out on the fruit list:

S egrep '~' fruits.txt
apple

orange

pear

peach

grape

banana

blueberry

plum

A lot of regex implementations offer the ability to use word anchors. As you saw, a regex like not only finds the word
cat, but also all those cases where cat is "hidden" in other, longer words. In such cases you can use the start-of-word
and end-of-word anchors, and , respectively. These meta characters don't match on characters, but between them.

So if you were looking only for occurrences of the word cat, you could use the regex.

For the next hands-on example you'll need the cats .txt file, which contains several words that contain cat. First, try the

following:

$ egrep '\<cat' cats.txt
cat

cattle

catalog

scrawny cat

Fromthis example it becomes clear that start-of-word boundaries not only work between words, but also catch words at the
beginning of a line.

These word boundary anchors aren't supported by all regex implementations though. A number of implementations
(including perl's) offer is-word-boundai and not-a-word-boundary anchors instead, in which case the regex

would have to be replaced with |\bcat\b|.

In this context, the term "word" should be taken lightly; every combination of letters, upper and lower case, the underscore
(_)and digits counts as a word when dealing with word boundary anchors.

3.2. Character Classes

With the construct you can indicate that on a certain position within the pattern one of several characters ma
appear. Suppose for instance that you're trying to find both cake and coke. In that case you can use the regexm.

Another example, to recognise hexadecimal digits, is | [0123456789abcde fABCDEF] | This quickly becomes impractical
though. Fortunately you can use a hyphen to specify a range: | [0-9]1| More than one range in a character class is also

allowed:| [0-9a-fA-F]|.

Just make sure you don't write when you mean . Though it might look convenient, the first regexalso

catches the six characters between 'Z' and 'a’ (if you're using the ASCII character set, that is).

You can also specify a negated character class by placing a caret () directly after the opening bracket: . This inverts
the sense of the character class: matches any character but digits.

Fine, but what if you want those brackets, hyphen and caret to appear as characters inside a character class? One way is to
escape them with a backslash:|[\~\ 11| Another way is to put themin places in the character class where they're not valid.
The regex engine will then treat the character as a literal. So, place the dash first or last within the character class, the caret

in any but the first place, and the closing bracket right after the opening bracket: | [1~ [-]]|is a valid character class
containing four characters.

3.3. The Dot

The dot, I:I, can be considered a special case of a character class, in that it matches any character. for instance
matches both this and thus, but also thgs, thi#s, etc.

This means that a regexto find an IP address, for example [209.204.146.2 2|, will not work. All three dots need to be
escaped: |2 09\.204\.146\.2 2| does work. Well, there could be digits preceding or following the IP address. That can be

solved by using word boundary anchors:|\<209\.204\ . 146\.22\>|.

Used inside a character class, the dot loses its meaning though. A character class to search for some punctuation
characters, for example, might look like this: .

3.4. Quantifiers

Using quantifiers, you can specify how often a character, character class or group may or must be repeated in sequence.

The general formis .

An example is the regex|bo {1, 2} t|, which matches both bot and boot. To match any sequence of three to five vowels,

you can use|[aeiou] {3, 5}| Oryou can use a quantifier to make something optional: [finds {0, 1}|matches find and
finds. This case occurs often enough to justify an abbreviation: the regex|finds?|is effectively identical to the previous.

Important to notice at this point is that a quantifier only applies to the itemthat precedes it. The question mark in the above
regex only applies to , not to the entire.

If you want to match something a certain number of times you can set the mimimum equal to the maximum: |~-{80, 80} $

matches lines that consist of exactly eighty dashes. Some regex implementations allow this formto be shortened to I:
{num} | With this, the previous regex can be shortened to .

It's also allowed to leave out the upper bound: will match any row of at least five letters 'a'. The case of "one or

more" (eg. occurs much more frequently, though. That's why this form has an abbreviation, the : and

are effectively equivalent.

The case "zero or more" also has a short form: . For instance, [*| will match any number of letters 'e' in sequence,
including zero. But be careful: a regex will always match as "early" as possible. So if you expect this regex, when applied to
beer, to match the boldfaced text, you're wrong! That's because there's a sequence ofe's at the beginning of the text,
before the b. The fact that the sequence is zero characters long makes no difference to the regex In such a case, might
be more appropriate.

Important to know is that quantifiers are greedy. That means, that if you apply the regex|1*|to the text 11111, it will
consume all the 1's. Not until a quantifier's greediness would cause a pattern mis-match will the quantifier release some of
the text it consumed.

Take the regex| [0-9] *25| for example, which matches numbers ending in 25. If you apply it to the text 3425, the quantifier
will at first consume the entire text, because each of the characters can be matched by the character class | [0-9]|. But that
prevents frommatching, causing the entire regexto fail.

In such cases the quantifier will release one character at a time. First the 5 is released, leaving the quantifier matching only
342. When it turns out that that still isn't enough, the 2 is released as well, allowing the rest of the regex, , to match.

This means that a regex that contains a lot of quantifiers will have many combinations to try before failing. So if the text it's
applied to causes many near-matches, it might all of a sudden take a very long time to process the data.

3.5. Alternation

With the |I| meta character, the or, you can merge several regexes into a single regex. With this you supply the regex
engine with alternatives. |Jack| and | Jilll are two seperate regexes, whereas is one that will match either.

Further back I mentioned the regex. Using alternation you can write it (less efficiently) as , where the

parentheses (which therefor are meta characters too, more on this later) are used to limit the effect of the alternation.

Another, almost classic example is the regexl ~ (From|Subject |Date) : « [, which can filter an email message's headers. In
this particular example the parentheses are by no means optional; the regex|"From| Subject |Date: *

matches

something else entirely. By pulling it apart you get three seperate regexes IAFromI, ISubj ectl and IDate s e |, which clarifies
(Thope) why the regexis wrong (as in, not fit for filtering email headers).

3.6. Grouping

In addition to the function of limiting the effect of alternation, parentheses have another function, which is grouping
for quantifiers. Everything about quantifiers that applies to characters and character classes also applies to groups.

An example is (hurrah «) {2,3} ,WhiCh matches hurrah hurrah as wellas hurrah hurrah hurrah .

A more complex example combines alternation and grouping with a quantifier:| (hurrah « | yahoo «) {2, 3}| That gives
twelve possible combinations, including for example hurrah yahoo and yahoo hurrah yahoo .

3.7. Backreferences

The use of grouping has a very useful side-effect. That's because certain regex implementations "remember" the matched
text in a grouping, and make this available both during and after the application of a regex.

Assume you have a piece of text you wish to search for double words, such as ..when « when « ... Now, you could try to
build a seperate regex for every word you can think of, but wouldn't it be convenient if you could say, "find something that
matches this pattern, then match it again"?

You can. Provided your regex implementation supportts it, parentheses ((..)) "remember" what they match. In that case you

could search for double words with the regex| ([a-za-2]+) \1|. The meta character is called a backreference.

Using this regexalso catches cases such as when whenever though, so in this casel ([a-zA-3Z]+) * \1\>|mightbea
better regex.

In this example the meta character refers to the first opening parenthesis. You can of course have several groups in a
regex, but the maximum number of backreferences is limited to nine (\1 ... \9) in most regex implementations.

To determine which backreference corresponds to which group, you need to count the number of opening parentheses
fromthe left. In the example above, we only had one group, so that's easy. But the next example is a bit more complicated.

((thela) (big(red)?|small(yellow)?) (car|bike))|contains sixgroups.The example file (contains five lines,

four of which can be matched by the regex:

$ egrep '((thel|a) (big(red)?|small(yellow)?) (car|bike))' car.txt
the big red car

a small bike

the small yellow car

a big red bike

To clarify which backreference corresponds to which group, I wrote a small perl-script. This gives the following output:

$ perl -n refs.pl car.txt
"the big red car"

\1l => the big red car

\2 => the

\3 => big red

\4 => red
\5 => (null)
\6 => car

"a small bike"

\1l => a small bike
\2 => a

\3 => small

\4 => (null)

\5 => (null)

\6 => bike

"the small yellow car"

\1l => the small yellow car
\2 => the

\3 => small yellow

\4 => (null)

\5 => yellow

\6 => car

"a big red bike"
\1l => a big red bike

\2 => a

\3 => big red
\4 => red

\5 => (null)
\6 => bike

The script applies the regexto every line of the example file, and prints the backreferences if it matches. In the output,
(null) indicates that the group to which the backreference corresponds is not part of the match.

So, you can use multiple groups in a regex, but the maximum number of backreferences is, in most regex implementations,
limited to nine (\1 ... \9).

A slightly larger example is the task of untangling the query string in a URL, for example

http://www.foobar.com/search?query=regex&view=detailed.

Assume we want to extract the name and value of the query variable from this URL. This can be done with the regexE
([a-zA-Z]+)=(["&]+) | With this regex, we use to line up the regex with the query part, which starts after the
question mark. Then we match the name of a variable using , and surround it with parentheses to save it for
later processing, . This should be followed by an equal sign, so we append E to the regex. Finally we need
to capture the variable's value. This can be done with , since the string that makes up the value goes on until the
next &, which acts as a name=value delimiter. This also works if the value is not followed by an ampersand, in which case
the variable's value takes up the rest ofthe URL. The value regexneeds to be enclosed in parentheses since we want to

save it for later, so we get | ([~s]+) |

Although there are two sets of parentheses in the regex, neither is used in the regex by a backreference. Then how do we
get to the data? Well, this strongly depends on the tool in which the regexis used. Following are a few examples.

With perl, the content of both backreferences is available after the match in the variables $7 and $2. The following snippet
of code shows how this can be used.

Surl = 'http://www.foobar.com/search?query=regex&view=detailed';
sSurl =~ /\?([a-zA-Z]+)=([*&]l+)/;
print "s$1 = $2\n";

In PHP you'd have to use the ereg() set of functions (see the manual), like this for example:

Surl = 'http://www.foobar.com/search?query=regex&view=detailed';
ereg ('\?([a-zA-Z]+)=(["&]+) "', Surl, Srefs);
echo "$refs[1l] = Srefs[2]\n";

4. Pitfalls

Misconceptions or lack of understanding of quantifiers are the main cause of errors, although even the most hardened
regex hackers make these mistakes every once in a while. Take, for example, the text "Hey you", he said, "did you
say something?". We'll try to match the first piece of quoted text, including the quotes. So we use the regex,
because we want to match a double-quote, followed by text, being an arbitrary character (I:I) matched an arbitrary number
of times (), followed by another double-quote.

But what we appear to match is not "Hey you",but "Hey you", he said, "did you say something?"!

Whoops. Slght mistake. But where? The point is that quantifiers are so greedy, they don't even look at what the rest of the
regex might want to match. devours everything fromthe first 'H' after the first quote to the end of the line, and is then
coerced to release the last character to match the final double-quote in the regex.

Apparently, we need to be more precise about what we mean: we want a double-quote, followed by everything but a
double-quote, followed by a double-quote. Or rather: .

This regex does a much better job, but you need to realise that escaped quotes will ruin the fun: "when he yelled,
\"Come here!\", I left", she said..In this case we appear to match "When he yelled, \".A solution forthis
problemis less trivial than might appear at first glance, and falls outside the scope of this tutorial.

5. More Information

Most of my knowledge of regular expressions comes fromthe book Mastering Regular Expressions, written by Jeffrey
Friedl and published by O'Reilly. For more application-oriented information about regular expressions you could try
O'Reilly's books on sed & awk or perl.

If you're a PHP programmer, be sure to read the manual page entries for the ereg (POSIX) and preg (Perl-compatible) regular
expression set of functions.

Perl programmers can either check the manual entry for regular expressions at Perldoc.com, or you could try typing man
perlre at the shell prompt (if you're running a UN*X-like OS, that is).

Home

Last updated: 2006.09.04

