Psychoacoustic reflections of frequency selectivity in the auditory system

Masking experiments
• Listen for a probe (typically a sinusoid) in a background of a masker with a variety of spectral shapes (typically a noise).
• Assume: A listener has independent access to, and can ‘listen’ selectively to the output of an individual auditory filter – the one that will give best performance.
 – the probe frequency controls the centre frequency of the auditory filter that is attended to
• Assume: Only noise that passes through the same filter as the sinusoid can mask it.
• Assume: Only the ‘place’ principle applies — no temporal information.

Of mostly historical interest: Band-widening

The frequency specificity of masking
• Listen for a set of three pulsing tones (the signal or probe).
 • These will alternate with masking noises that occur twice each, and change through the series.
 • If two masking noises in a row sound identical, then you can’t hear the probe tone — it has been masked.
• When is the tone masked, and when not?

The band-widening experiment
• Measure the threshold of a sinusoid in the centre of a band of noise
• Vary the width of the band of noise
• Assuming auditory filters can be thought of as ideal bandpass filters, how should the thresholds for the probe change as bandwidth increases?
The notion of the critical band as seen in band-widening experiments

For a fixed narrow-band masker, determine the change in threshold for sinusoidal probes at a wide variety of frequencies.

Excitation pattern (spectrum) or tuning curve (frequency response)?

Psychophysical tuning curves (PTCs)

Determine the minimum level of a narrow-band masker at a wide variety of frequencies that will just mask a fixed low-level sinusoidal probe.

Excitation pattern (spectrum) or tuning curve (frequency response)?
Why you can’t easily interpret PTCs at higher levels: Off-frequency/place listening

From Gelfand (1998)

Notch *band stop* noises limit off-place listening

From Moore (1997)

Narrow vs broad filters

Narrow filter

Broad filter

Notch gets wider

From Patterson et al. (1982)

Thresholds at different notch widths

From Patterson et al. (1982)
Typical results at one level, and a fitted auditory filter shape (symmetric & asymmetric notches)

Now measure across level and assume filter linearity at frequencies substantially lower than CF

Auditory filter shapes across level & frequency: Note the asymmetry

Low masks high, but not v.v. Excitation patterns
Mathematical interlude: Adding up levels
You know about adding up waves, e.g. from two loudspeakers

But how do you get the total rms from the rms values of two signals that are added?

Conclusion: you don’t add them! (the squaring for rms is non-linear)

Powers & intensities do add

power/intensity \sim voltage2/pressure2

no need to worry about constant of proportionality

$\sqrt{0.707^2 + 1^2} = \sqrt{0.5+1.0} = \sqrt{1.5} = 1.22$

This holds true as long as the two signals do not overlap in spectrum

What can happen when you add a 1-V 1-kHz sine wave to another 1-V 1-kHz sinusoid?

Specifying levels for noises: signals with continuous spectra
Specifying levels for noises: signals with *continuous* spectra

- spectrum level
 - measured within a 1 Hz band
- overall level
 - summed over the whole spectrum
- converting between measures has to be done in terms of *power*, not amplitude.

Interlude: signal-to-noise ratio (SNR)

- Literally ...
 - rms level of signal/rms level of noise
- usually expressed in dB
 - $20 \log_{10}(\text{signal/noise})$
- Nothing implied about the form of the signal or noise
 - the signal is what you are interested in (e.g., a tone, a band of noise, a word, a sentence)
 - the noise is everything else (e.g., a tone, car noise, speech from other people)

Main points

- The “filters” through which we listen to sounds are the filters established in the inner ear, in SNHL as well as normal hearing.
 - supported by the similarity between physiological and behavioural measurements
- The width of the auditory filter is an important determinant in how well we can hear sounds in noise (which is almost always).
- People will use whatever information is available to them, even when the task is as trivial as detecting a tone.