Acoustics of Speech and Hearing

Week 2-10 Hearing 3: Auditory Filtering

Hearing Lectures

- 1. Loudness
 - of sinusoids mainly
 - (see Web tutorial for more)
- 2. Pitch
 - of sinusoids mainly
 - (see Web tutorial for more)
- 3. Timbre
 - of complex sounds

Facts about Timbre

- Timbre is defined as all the sound differences that are not due to loudness or pitch
 a "wastebasket" category
- For example
 - two musical instruments playing the same note
 - two different vowels spoken on same pitch
- Mark's patented "lighthouse" analogy

Auditory Lighthouse

- Loudness
 brightness of flashes
- Pitch
 repetition
 - repetition rate of flashes
- Timbre
 colour of flashes
- Although ...

There is more to timbre than colour Timbre also has a temporal dimension: a musical note has a different timbre when played backwards How a sound starts & stops is also important.

Analysis of Complex Sounds

- So far we have concentrated on processing of single sinusoids in cochlea
- But to study timbre we need to consider how the cochlea deals with complex sounds made up from many sinusoids
- So instead of asking how does a **single sinusoid** excite **all parts** of the basilar membrane, we need to ask how does a **single part** of the basilar membrane respond to **all sinusoids** in a complex sound?

Basilar Membrane = Filterbank

- Hair cells on each region of the BM fire when that part of the BM vibrates
- But each sinusoid vibrates a number of regions
- Or conversely, each region is excited by a range of frequencies (but to different degrees)


```
    Spectrography

            Filter bandwidth is the
same at all frequencies,
either narrow (45Hz) or
wide (300Hz)
```

- Filters are spaced linearly in Hertz along the frequency scale
- Cochlear Analysis

 Filter bandwidth is narrow (100Hz) at low frequencies, and wide (500Hz) at high frequencies
 - Filters are spaced logarithmically in Hertz along the basilar membrane

Filterbank Summary

- As far as processing complex sounds is concerned, it is best to treat cochlea as a filterbank
- with say 30 filters rather than 30,000 hair cellsThe filters in the cochlea filterbank are
- logarithmically spaced and have a bandwidth that increases with frequency
- The excitation pattern on the auditory nerve reflects this filtering, with harmonics being resolved only at low frequency, and with the spectral envelope being encoded at high frequency

Importance of Filterbank Model - 1

- Combination of narrow and wide band analysis explains how we can be sensitive to pitch and timbre simultaneously
- Model explains why formant frequencies are so important – they affect spectral envelope at mid to high frequencies
- Model explains auditory masking
- Model explains why speech is less intelligible in noisy situations

Importance of Filterbank Model - 2

- Model explains why listeners with sensorineural deafness have difficulty in discriminating sounds
 - they have an increase in auditory analysis bandwidths
 - this makes the spectral envelope smoother
 - and worsens the masking caused by noise
- Model has influenced design of hearing aids and cochlear implants

Summer Term

- Revision Day: Tuesday 23rd April
 - 9-10 Review lecture (118)
 - 10-12 Review tutorials
 - 12-1 Examination advice
- Examination: XXXday YYth ZZZZZ (check!)
- Hand in coursework folder for moderation of marks