## Acoustics of Speech and Hearing

Lecture 1-9 Signals & Systems Review Introduction to Spectrography

#### Overview

- Review Signals and Systems
- Review Source-Filter Model
- Introduction to Spectrography

## Signals and Systems Theory

- Quantitative description of
  - Signals, e.g. a sound
  - Systems, e.g. a tube
- Used in the course to analyse:
  - Speech Production
  - Instrumentation
  - Hearing

# Signals

### Sound

- Pressure waves
- Loudness  $\rightarrow$  amplitude (or intensity)
- *decibel* scale
  - $dB = 20 \log_{10} (AmplitudeRatio)$
  - If AmplitudeRatio =  $2 \rightarrow +6$ dB
  - If AmplitudeRatio =  $10 \rightarrow +20$ dB
- Sound Pressure Level Scale
  dBSPL = 20 log<sub>10</sub> (MeasuredAmp/20μPa)























# Static and Dynamic Signals

- **Static:** A monophthongal vowel on a constant pitch can be described by any single spectrum just like a single snapshot picture of a stationary
  - object
- **Dynamic:** A vowel that changes in quality or changes in pitch has a spectrum that changes with time
  - just like a movie is needed to show a moving object







#### Summary

- Spectrogram is to Spectrum as Movie is to Snapshot
- Spectrogram is like a series of spectrum snapshots
- Amplitude compressed into coloured scale like a relief map
- More next week!

### Programme Today

- Recordings (10.30-12.30, 2.00-4.00)
  - See timetable for your own recording time
  - Research Laboratory, CH Basement
  - Please be punctual
  - Check through reading materials in handbook in advance
- Test-Quiz (1.00-1.45)
  - Room B02, CH