SPSC2003 Phonetic Science: Acoustics of Speech and Hearing

Week 1 Introduction, Sounds and Vibrations

Overview

- Introduction to the course
- What is sound?
- Sounds caused by repeating vibrations
- How to measure simple vibrations
- · First lab experiment

Aims & Motivations

- How does the acoustic part of the speech chain work? - speech sound differentiation and variation
- How can we measure the speech signal? - quantitative not qualitative
 - use of instrumental analysis
- How is instrumentation used?
 tape recorders, computer analysis, laryngograph
- What are consequences of disorder?
 - at each point in chain
 - effect on sound, effect on perception of listener

Administrative Details

• Classes

- 20 lectures: 9am Tuesday, B01 Chandler House
- 8 tutorials: 1 hour every fortnight (approx)
 - starting this week
- 18 lab classes: 2 hours in Speech Sciences Lab
- Revision day: term 3
- Assessment
 - 4 lab reports & 2 short-answer tests (30%)
 - 3hr written examination (70%)

Administrative Details

- Tutorial and Laboratory Groups
 - Tutorial group sheet
 - Includes 2801 clinical tutorials
 - Swap around at Christmas
 - No transfers! Only swaps (2801 permitting)

Learning Resources

- Moodle site www.ucl.ac.uk/moodle
 - Administrative details
 Weekly planner with handouts & slides
 - Reading and web resource recommendations
 - Frequently asked questions (with answers)
 - Weekly quizzes
 - Report writing style guides & example report
 - Examination preparation
 - Links to softwareDiscussion board
- Discussion board
 Text Book recommendations
- Introduction to Acoustics booklet
- Web tutorials
- web tutorials

Knowledge & Skills

- No mathematics
- Just arithmetic manipulation of data
- No previous physical science concepts

 We provide everything you need
- Transferable skills
 - Working in the laboratory
 - Thinking about speech scientifically
 - Writing reports of experiments
- Be prepared to learn
 - Resources are there for you to make use of

Sounds & Vibrations

What is sound?

PHYSICS

- "Sound is a longitudinal pressure wave in an elastic medium"
- Objective
- Easy to measure

PSYCHOLOGY

- "Sound is a sensation delivered to the brain by the hearing mechanism"
- Subjective
- Hard to measure

Sound sensation is **caused by** pressure variation

Hearing mechanism

- Variations in atmospheric pressure move ear drum in and out
- Movement of drum causes fluid flow in cochlea which causes nerves to fire
- We perceive sound in terms of that nerve activity

Loudness "Quantity of sound" Pitch "Melody of sound" Timbre "Quality of sound"	Subjective terms for sound		Any moving or vibrating body affects local air pressure
Pitch "Melody of sound" Timbre "Quality of sound"	Loudness	"Quantity of sound"	• These fluctuations in pressure propagate away from the source (at high speed)
Timbre "Quality of sound"	Pitch	"Melody of sound"	
	Timbre	"Quality of sound"	

Natural Frequency

- When a pendulum is struck, it vibrates periodically at a characteristic frequency that is related to the size of the pendulum
- This is called the pendulum's Natural frequency
- Longer pendulums vibrate with a lower frequency (greater period) than shorter pendulums
- Note that the natural frequency is a characteristic of the pendulum, **not** of the vibration (a pendulum has a natural frequency even when it is not vibrating).

 We can measure the degree of damping by measuring how quickly the amplitude of vibration reduces over time.

 Note that damping is a characteristic of the pendulum, not of the vibration (a pendulum has a degree of damping even when it is not vibrating)

First Lab Experiment

- The Damped Pendulum
 - The natural frequency depends on the physical size of the pendulum: can you uncover the relationship?
 - If we put a paper cone on the pendulum we can make it come to rest more quickly.
 - We say that the paper cone increases the **damping** of the system.
 - But how do you think this extra resistance to movement affects the natural frequency of the pendulum?

First Lab Experiment

- Key experimental skills:
 - Accurate measurements
 - Estimation of size of error
 - Calculations with and presentation of data
 - Analysis and interpretation of results
- It is not a test!
- Enjoy yourself!

Where am I going next?

- Groups A
 - 10.30 Tutorial in Room G06
- Group B
 11.30 Tutorial in Room G06
- Group C

- 10.30 Laboratory session in B07 (Lab)

- Group D
 - 10.30 Laboratory session in B07 (Lab)
- Not on the list?
 - See Mark in his office (Room 320) after this lecture