UCL

The Science of Talking:

Speech is highly variable

Rachel Baker Speech Hearing and Phonetic Sciences, UCL 02/12/2010

Variability in speech

At the sentence level these differences become even more striking....

≜UCL

Variability in speech

- Between-speaker variability
 - Anatomical factors
 - Vocal tract dimensions
 - · Vocal fold length/thickness
 - Sociolinguistic factors
 - Regional accent
 - Other speech production differences linked to gender, age, 'social group' membership etc...
 - Idiosyncratic/individual differences in production
 - 'jaw-movers' vs. 'non jaw-movers' when producing high/low vowels

[±]UCL

≜UCL

Variability in speech

Within-speaker variability

- Speech rate
- Physical health
- Mental health
- Speaking style: who speaking to, topic of conversation etc..
- Pathologies (e.g. glossectomy)

≜UCL

Approach 1: 'Inherently clear speakers'

Can we find specific acoustic-phonetic features of a voice that make it particularly clear? 1. Recordings of 45 speakers of South-Eastern British · Intelligibility of words in noise · Subjective ratings of the voice 3. Acoustic-phonetic measurements 4. Correlation between acoustic-phonetic measures and

[Hazan and Markham, 2004]

			⁺UCL
Rate the spea	akers		
Female speakers			
af-03	af-06	af-16	
Mala anaskara			
am-14 🎻	am-10 🍕	am-05 🎻	
			13

[±]UCL

4

4

19

Approach 2: comparing speaking 'normally' and 'clearly'

- · Read sentence normally
- Read sentence as it talking to someone who is hearing impaired

Your turn Record the following sentence: "The young children loved the beach" - once speaking normally - once as if speaking to someone who is hearing impaired

UCL

What are the drawbacks of collecting data like this?

[±]UCL

20

Why is it important to collect interactive spontaneous clear speech data?

- Read speech might be over/under-estimating clear speech in an interaction
- · Trade-off between communication ease and lack of effort
- Different types of clear speech?

[±]UCL

Focus: investigating clear speech with 'communicative intent'

What ways do people modify their speech when they are in a situation where they are not easily understood?

UCL

How can we collect spontaneous speech?

- A collaborative task for two people is useful if you need:
- Clear and casual speaking styles for each participant
- · Similar topics and words in both styles
- · High quality recordings

للالت Description of a cochlear implant Simulation of a cochlear implant Simulation of a cochlear implant Simulation of a cochlear implant Channel noise vocoder ﴿ ﴿ ﴾ Talking to someone in a noisy background Multi-talker babble ﴿ ﴾ Talking to someone who cannot speak or understand English well Native Chinese/Korean speaker with low score on English test ﴾

<u>≜UCL</u>

What adaptations might be expected from different communication barriers?

'Barrier'	Effect of barrier on listener	Helpful clarifications	Unhelpful clarifications
Babble	Masking of key acoustic cues Heightened thresholds	Higher mid- frequency energy Higher F0/F0 range Enhanced vowel space Slower speech rate	
Noise- excited Vocoder	Poor spectral resolution Loss of voicing information	Enhanced vowel space Slower speech rate	Higher mid- frequency energy Higher F0/F0 range

⁺UCL

Do the data support these predictions?

[±]UCL

Can we make our speech clearer?

Artificial enhancements

- Normal sentence 🐗
 - Slowed-down 📢
 - With more mid-frequency energy
 - With extended pitch range/mean

≜UCL

Further investigations of clear speech

- Clear speech in languages other than English
- · At what age are we able to produce clear speech?
- Comparisons of child directed speech and pet directed speech....

33