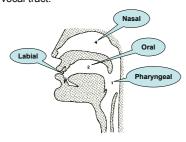


SSC 0158: The Science of Talking

The Source-Filter Model of Speech Production

Fang Liu

ESRC Postdoctoral Fellow
(Dept. Speech, Hearing and Phonetic Sciences, UCL)


18 November 2010

Plan for afternoon

- · Lecture: Production of vowels
- Lab: Frequency analysis of vowels used in sentences
- · Tutorial: Review & check understanding

What is a vowel?

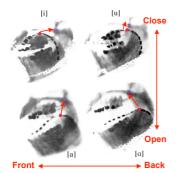
 Vowel: A sound produced without a close obstruction in the vocal tract.

Ashby, M. & Maidment, J. (2005: 200). Introducing phonetic science. Cambridge University Press

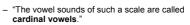
X-ray films of vocal tract

 'Why did Ken set the soggy net on top of his deck?'

• 'Le boulanger but onze bières.'


· 'It's ten below outside.'

http://psyc.queensu.ca/~munhallk/05_database.htm


X-rays of cardinal vowels

- X-ray photographs of the tongue positions of Daniel Jones' cardinal vowels [i, u, a, α]
 - A chain of small lead plates strung together was placed on the tongue to show its
 - The large dot added on each photograph marks the highest point of the tongue.
 - The cross is a point of reference (near the end of the hard palate)

Cardinal vowels

- · Cardinal vowels:
 - "a standard set of vowels for reference a scale of vowels which can be used in the same sort of way as a scale of degrees which enables us to specify temperatures."

 "Cardinal Vowels can only be learnt from a teacher who knows how to make them or from a gramophone record or tape record."

- Started phonetics teaching at UCL: 1907
- Professor of Phonetics: 1921-49
- Head of Department of Phonetics

Daniel Jone

Jones, D. (1956: 6). Cardinal vowels (8th ed.). Cambridge: W. Heffer & Sons Ltd.

Henry Sweet, Daniel Jones, Peter Ladefoged, and My Fair Lady

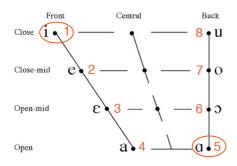
(1881–1967)

(1925-2006)

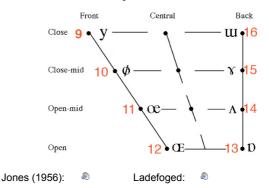
Lineage

Daniel Jones taught David Abercrombie.

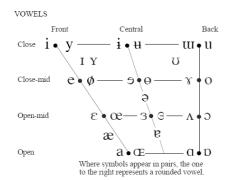
• David Abercrombie taught Peter Ladefoged.


Peter Ladefoged taught Sean Fulop.

· Sean Fulop taught me.


Primary cardinal vowels

Jones (1956): Ladefoged:


http://www.langsci.ucl.ac.uk/ipa/vowels.html

Secondary cardinal vowels

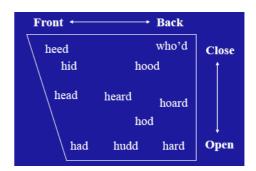
http://www.langsci.ucl.ac.uk/ipa/vowels.html

International Phonetic Alphabet (IPA)

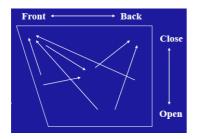
Vowels in British English

- · Monophthongs
 - bead, bard, bawd, booed, bird long
- bid, bed, bad, bud, bod(y), budd(hist) short

- Neutral
 - vanilla schwa
- · Diphthongs
 - bayed, bide, Boyd fronting
- beer, bare, byre, boor centering

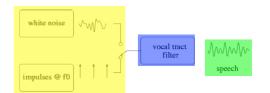

- bode, bowed - backing

BBC English Vowels in IPA


	b_d	IPA		b_d	IPA
1	bead	i:	11	booed	u
2	bid	I	12	bud	Λ
3	bayed	eı	13	bird	31
4	bed	ε	14	bide	aı
5	bad	æ	15	bowed	aυ
6	bard	αz	16	Boyd	oi.
7	bod(y)	a	17	beer	ıə
8	bawd	οĭ	18	bare	еэ
9	budd(hist)	υ	19	byre	aə
10	bode	ວບ	20	boor	υə

http://www.phonetics.ucla.edu/vowels/chapter3/bbcenglish.htm

English monophthongs on vowel quadrilateral


English diphthongs on vowel quadrilateral

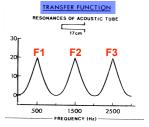
- · Find the diphthongs:
 - bayed, bide, buoyed (fronting)
 - beard, bared (centering)
 - bode, bowed (backing)

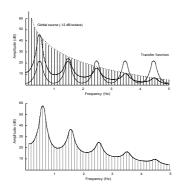
The Source-Filter model

- Speech is the result of source + filter
- · Source: sound produced at the origin
 - Noise source: provided by various obstructions of the airflow above or at the larynx
 - Periodic source: provided by the vibration of the vocal cords
- Filter: the air space(s) in the vocal tract whose resonances modify or shape the source sound.

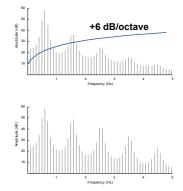
Glottal source

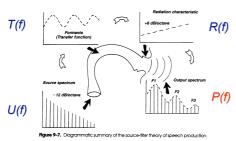
- Vocal fold vibrations produce a sound source a glottal wave
- Periodic wave with fundamental frequency plus a range of harmonics.
 - Cycle: one complete unit of the wave
 - Period T: the time it takes for the wave to complete one cycle
 - Fundamental frequency F0 = 1/T, how often the wave (cycle) repeats itself in 1 second, in cycles/second or Hz
- The spectrum of the glottal source decreases in amplitude with increasing frequency at a rate of around -12 dB per octave




The Filter

- Vocal tract is a resonator (filter) that will dampen certain harmonics and emphasise others – those that are closest to its resonant frequencies - formants
- For a relatively unconstricted vocal tract (the vowel schwa), the resonances of a 17 cm vocal tract occur at 500 Hz (F1), 1500 Hz (F2), 2500 Hz (F3)...




Applying transfer function to glottal source spectrum

Effects of Radiation at the lips

Source-Filter Model in a nutshell

 $P(f) = U(f) \cdot T(f) \cdot R(f)$

P(f) — Output sound pressure spectrum

U(f) — Laryngeal source spectrum

T(f) — Transfer function of the vocal tract — formants

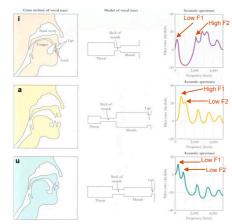
R(f) — Radiation characteristic

Independence of source and filter

- The characteristics of the source and filter can vary independently without affecting the characteristics of the other:
 - Different vowels can have the same pitch

- The same vowel can have different

pitches

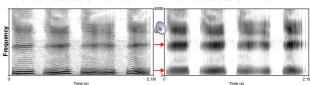

http://www.haskins.yale.edu/featured/heads/mmsp/acoustic.html

Different vowels...

/i/ constriction in the front half of the tube

constriction in the rear half of the tube

constrictions both in the middle of the tube and at the front end

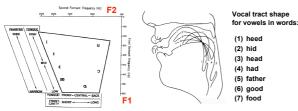


Measuring formants from the spectrogram

Spectrogram shows how composition of sound varies with *frequency* and *time*: **Wideband** vs. **narrowband**, with different sizes of band-pass filter (e.g., 330 Hz vs. 45 Hz)

Narrowband spectrograms reveal harmonic structure -- Source

Wideband spectrograms show formant structure -- Filter

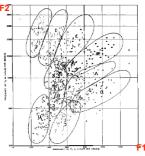


/i/ with Chinese four tones: High, Rising, Falling-rising, Falling

- Vertical striation = glottal pulses
- Darkness = intensity (dB)

 Dark horizontal bands = formant frequencies (Hz)

Vowels: Articulation vs. acoustics

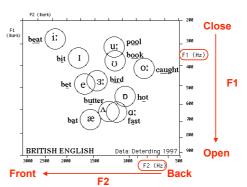

- F1 correlates with size of pharyngeal cavity and degree of lip opening (when the tongue high, the pharyngeal cavity is larger, as in [i], resulting in lower F1) -- Vowel openness or height
- F2 correlates with the length of the oral cavity -- frontness/backness (the longer the oral cavity due to the more retracted tongue the lower F2)

Lip rounding protracts the oral cavity and thus will **decrease F2**

Ladefoged, P. (2001). A course in phonetics (4th ed.). Harcourt College Publishers.

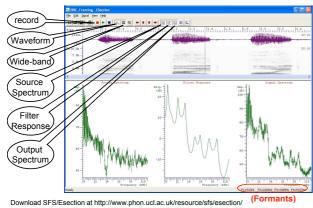
Acoustics vs. Vocal tract size

- Actual formant frequencies differ across speakers due to differences in their vocal tract size
- In general, larger vocal tracts (adult males) result in lower resonant frequencies than the smaller ones (adult females and children)
- However, the formant patterns (F1, F2, F3) are consistent speaker to speaker



Peterson & Barney (1952): F1 x F2 plot for 10 American English vowels, by 33 men, 28 women, and 15 children, 1520 tokens

Summary: Vowel classification


- · Frontness (on vowel quadrilateral)
 - Front Central Back
 - The more front the vowel, the higher the F2
- · Openness (on vowel quadrilateral)
 - Close Close-mid Open-mid Open
 - The more open the mouth (the lower the vowel), the higher the F1
- Length
 - Long short
- · Direction of any quality change
 - Fronting Centering Backing

Formants of English Monophthongs

Deterding, David (1997) The formants of monophthong vowels in Standard Southern British English pronunciation. Journal of the International Phonetic Association 27, 47-55.

Lab: Measuring formants using SFS/ESection

