Loudness and the perception of
Intensity
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Thresholds for different
mammals
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Mammals
excel in
hearing high
frequencies
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Highest audible frequency correlates
with head size in mammals
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Sivian & White 1933
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Two ways to define a threshold

e minimum audible field (MAF)

- in terms of the intensity of the sound
field in which the observer's head is
placed

e minimum audible pressure (MAP)

—in terms of the pressure amplitude at

the observer's ear drum

e MAF includes effect of head, pinna &
ear canal



MAP vs. MAF
Accounting for the difference
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Frequency responses for:

ear-canal entrance

free-field pressure

near the ear drum

ear-canal entrance

Total Effect:
near the ear drum

free-field pressure
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Determine a threshold for a 2-kHz
sinusoid using a loudspeaker
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Now measure the sound level

at ear canal (MAP):
15 dB SPL

at head position without
head (MAF): 0 dB SPL
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Accounting for the ‘bowl’

Combine head+pinna+canal+middle ear
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Detection of sinusoids in

F

X

R

cochlea

Threshold

e How big a sinusoid do we have to put into our
system for it to be detectable above some

threshold?

e Main assumption: once cochlear pressure reaches
a particular value, the basilar membrane moves

sufficiently to make the nerves fire.
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Detection of sinusoids in

F

X

R

cochlea

Threshold

_____ e

e A mid frequency sinusoid can be
quite small because the outer and
middle ears amplify the sound
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Detection of sinusoids in

cochlea
Threshold
R A /
X = Thb-oooooo--
F ,/_\\ F t F

e A low frequency (or high
frequency) sinusoid needs to be
larger because the outer and

middle ears do not amplify those
frequencies so much
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Detection of sinusoids in

A COC h I €a Threshold
R
|H||||‘| FX

i

g \
e S0, if the shape of the threshold curve
is strongly affected by the efficiency of
energy transfer into the cochlea ...

e The threshold curve should look like this
response turned upside-down: like a
bowl.
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Use MAP, and ignore contribution of head and
ear canal

e L ' Much of the
threshold curve
= can be
accounted for
o by the
efficiency of
energy transfer
into the
cochlea

(from Puria,
Peake &

éé-héé}' T i ROSOWSki,
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Loudness of supra-threshold
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The Phon scale of loudness

e "A sound has a loudness of X phons
if it is equally as loud as a sinewave
of X dB SPL at 1kHZz"

| e.g. A 62.5Hz sinusoid
~J | at 60dB SPL has a
= |40 dB contou

~~=F==7" loudness of 40 phons,

N because It is equally as
% 5

loud as a 40dB SPL
sinusoid at 1kHz
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-20
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Sound pressure level

Equal loudness contours
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Contemporary equal loudness contours
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S0 now we can specify the

loudness of sounds in terms of

the level of a 1 kHz tone ...

but how loud
IS a 1kHz tone
at, say,
40 dB SPL?

— 1000 Hz

Loudness (phons)
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Perceived loudness is (roughly)

logarithmically related to pressure
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Direct scaling procedures:
Magnitude Estimation

e Here's a standard sound whose
oudness is ‘100’
e Here’s another sound
- If it sounds twice as loud, call it 200
- If it sounds half as loud call it 50

e In short - assign numbers
according to a ratio scale

25



Alternatives to magnitude
estimation

e Magnitude production

— Here’s a sound whose loudness we’ll call
100

— Adjust the sound until its loudness is
400

e Cross-modality matching

— Adjust this light until it as bright as the
sound is loud

26



Magnitude estimates are well
fit by power functions
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... Which are linear on log-log
scales
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... SO also on log-dB scales
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Strict power law not quite right
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|I9A3| wnJyoads

How does loudness for noises
depend on bandwidth?

Vary bandwidth of noise keeping total
rms level constant

frequency !



Loudness for noise depends on
bandwidth
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Discrimination of changes in
Intensity

e Typically done as adaptive forced-
choice task

e Two steady-state tones or noises,
differing only in intensity

e \Which tone is louder?

e People can, in ideal circumstances,
distinguish sounds different by = 1-2
dB.
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Changes in intensity
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Across level, the jnd is, roughly speaking,

a constant proportion, not a constant amount. 34



Weber’s Law

e Let Ap be the minimal detectable change
in pressure, or just noticeable difference

(Jnd)

e Weber’s Law: the jnd is a constant
proportion of the stimulus value

Ap = k x P where k is a constant
Ap/P =k

e Like money!
e Also a constant in terms of dB
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The near miss to Weber’s Law in

intensity jnds for pure tones
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Figure 10.8 The value of Al in decibels (the difference in decibels between the more
and less intense tones) required for threshold discrimination is shown as a function of
overall tonal intensity in dB SL. Data for five frequencies are shown.

Based on data of Jesteadt, Weir, and Green, 1977, with permission
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Intensity jnds

e For pure tones, the jnd for intensity
decreases with increasing intensity
(the near miss to Weber’s Law)

e For wide-band noises, Weber’s Law
(pretty much) holds

e Probably to do with spread of
excitation -

— See Plack The Sense of Hearing Ch 6.3



A little detour:
Excitation Pattern models
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van der Heijden, M., and Kohlrausch, A. (1994). "Using an excitation-pattern
model to predict auditory masking," Hearing Research 80, 38-52.



Excitation patterns for a 1kHz tone
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Fig. 7. Calculated excitation patterns for a 1-kHz tone at levels of 2 dB SPL and
10—90 dB SPL in 10-dB steps.

Chen, Z. L., Hue, G. S., Glasberg, B. R., and Moore, B. C. J. (2011). "A new
method of calculating auditory excitation patterns and loudness for steady
sounds," Hearing Research 282, 204-215.



Excitation Pattern models for
frequency discrimination

The difference in frequency
(AF) that a listener can just
detect is predicted to depend
on the change in level (AL)
that results.

When any point on the
excitation pattern changes in
level by 1 dB, the listener is
predicted to be able to detect
that change.

Excitation level, dB

N
o

W«
w
I

o
o
]

N
w

N
(=]

-
a

—
o

a

o

T
AF
I

AL

700

800 900 1000 1100 1200 1300 1400 1500

Centre fregquency, Hz (linear scale)

(Moore, 2007)



Excitation Pattern models for
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Excitation pattern models for
intensity discrimination
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Explaining the near miss to Weber’s Law

100 | | changes
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- here than
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Fig. 7. Calculated excitation patterns for a 1-kHz tone at levels of 2 dB SPL and
10—90 dB SPL in 10-dB steps.

Chen, Z. L., Hue, G. S., Glasberg, B. R., and Moore, B. C. J. (2011). "A new
method of calculating auditory excitation patterns and loudness for steady
sounds," Hearing Research 282, 204-215.



Excitation patterns for a tone
and broadband noise
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bands of noise do not ‘spread’ along the
BM as intensity increases



