
CHAPTER 12

Applications to Hearing
So far we’ve been considering LTI systems in a fairly abstract
way, although using specific examples from speech and hearing
to illustrate many of the ideas. In this chapter we’ll discuss
in greater detail how the concepts we’ve developed can be
applied to better understand the functions of the peripheral
auditory system.

From Chapter 4, you are already familiar with the anatomy of
the peripheral auditory system and its three major subdivisions—
the outer, middle and inner ear:

What we will do here is to present an alternative way of
thinking about this set of organs—not as ‘wet’ biological
tissue, but as a collection of ‘black box’ systems. Each of these
transforms the signals passing through it in a similar way to
the transformations imposed by various structures in the auditory
periphery:
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The original acoustic wave in the environment is first transduced
by the microphone depicted at the left-hand side of the figure. The
resulting electrical wave can then be processed by the rest of
the systems in turn, resulting in the representation of the sound
that is sent to the brain by the auditory nerve fibres at the far right.

Some of the systems in this chain can be well characterized as
LTI, but others cannot. However, even for systems that are not LTI,
the concepts of LTI signals and systems analysis can often still be
usefully employed. We’ll now look at each one of these systems in
turn.
Outer ear

We’ll begin with the outer ear, which includes the pinna and ear
canal (also known as the external auditory meatus). The head itself
also alters the sounds we hear, so we will need to include its
effects. As you might expect, the effects of the pinna and head
depend upon the direction the sound comes from. Therefore, it
will be simpler for us to first describe the acoustic effects of the ear
canal, as these do not depend upon sound direction.

The ear canal is a sort of tube stretching from the surface of the
head to the tympanic membrane (eardrum). Having the tympanic
membrane at the bottom of a short canal, rather than at the surface
of the skull, significantly changes the sound that acts upon it.
More than 60 years ago, Wiener and Ross reported measurements
of the amplitude response of the ear canal in several ears (average
length 2.3 cm). They delivered sound to the open end of the ear
canal and measured the output at the tympanic membrane with a
microphone. The input to the system was defined as the sound
pressure at the entrance of the ear canal, and its output as the
sound pressure at the tympanic membrane as shown on the next
page:
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The mean amplitude response that Wiener and Ross obtained
was characterized by a single resonant peak near 4 kHz. At low
frequencies (below about 1500 Hz), there was little or no effect of
the ear canal:
Some understanding of this response can be gained by
imagining the ear canal to be a short cylindrical tube closed at
one end, as shown below. The input signal is the sound at the
opening of the model ear canal, the output is the sound at the
closed end of the tube, with the system being the tube itself.

It turns out that the main factor that determines what
frequencies are transmitted best in such a system is its length.
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Before seeing how this is so, we must first introduce a term that
you haven’t encountered up until now—wavelength. The wave-
length of a sinusoid is the distance the wave travels during one
cycle of vibration. This is easiest to understand in a diagram that
shows the pattern of acoustic pressure set up by a tuning fork, at
some point in time after ‘twanging’ the fork:
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As was explained for the figure on page 8, regions of high
pressure are indicated by lines that are close together, while
regions of low pressure are indicated by lines spaced more widely
apart. The sinusoid at the bottom of the figure is a ‘snapshot’ of
the instantaneous pressure across space at a particular moment of
time, with positions of maximum pressure marked with solid
circles. This is not a waveform, so the x-axis is not time. The
stretch between the two places of peak pressure represents a
particular distance—one wavelength (typically indicated by the
Greek letter lambda l). A wavelength is, thus, equal to the
distance between two points in space that are in the same position
in their sinusoidal cycle of pressure variations—that is, one period
apart.

We want to use a measure of wavelength to relate the
dimensions of a system like the ear canal (here its length) to the
frequencies that it passes best. It would be useful, therefore, to
have a formula that translates between wavelength and frequency.
Clearly, the distance a wave travels in a particular time period
must depend upon the speed at which it is moving through its
medium. For air (the medium), the speed of sound (convention-
ally symbolized as c) has a value of about 340 m/s (about
770 miles/h).

We can now calculate wavelength (l) as a function of the
frequency (f) of the sinusoidal sound, by considering how far the
wave travels in one period. In general, the distance anything
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travels is simply the product of its speed and the time its journey
takes. In a simple formula:

distance ¼ speed� time (1)

We can readily rewrite the equation above in symbols as:

l ¼ c� time (2)

All we need now is the time the wave has to travel. Because we

have defined wavelength as the distance travelled in one period,
this is simply given by 1/f. Therefore:

l ¼ c� ð1=fÞ ¼ c=f (3)

So, in order to calculate the wavelength of a sinusoid at 1 kHz,

we simply substitute the appropriate values into the equation
above:

l ¼ 340 m=s� ð1=1000 HzÞ ¼ 0:34 m (4)

or a little more than one foot.
You should be able to see from these equations that lower

frequencies (because they have longer periods) will have longer
wavelengths, whereas higher frequencies (with shorter periods)
will have shorter ones. However, the wavelength of a sound is
determined not only by its frequency, but also by the speed of
propagation of the wave, which in turn depends upon the
medium in which the sound is presented. So, for example, if the
role of the external ear in the auditory perception of scuba divers
was being studied, we would need to know the speed of sound in
water—about 1450 m/s. The wavelength of a 1-kHz sinusoid in
water would then be:

l ¼ 1450 m=s=1000 Hz ¼ 1:45 m (5)

or nearly 5 feet.
We can now use the notion of wavelength to characterize

features of the amplitude response of our model ear canal. If its
walls were infinitely rigid, the response seen below would be
obtained. You can see that the amplitude response consists of a
series of valleys separated by resonance peaks. Because the
system is idealized and has no losses
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(damping), the amplitude response shoots up to an infinitely-high
value. In a real system, such as the ear canal, frictional forces
(primarily at the canal walls) damp the amplitude response.
This broadens the resonances, and also prevents them getting
infinitely high:

Thus, over the 8-kHz frequency range measured by Weiner and
Ross, which includes only one resonance, the amplitude response
has a shape like a band-pass filter.

It turns out that the position of these resonances is related in a
simple way to the length of the ear canal. The lowest resonant
frequency has a wavelength four times the length of the ear canal
(called a quarter-wavelength resonance). Before working out what
frequency this corresponds to, we need to re-arrange equation (3)
from above to obtain:

f ¼ c=l (6)

Now, if the length of the ear canal is L (expressed in metres), its

first resonant frequency f1 has a wavelength of 4L. Thus, from
equation (6), the lowest resonant frequency is:

f1 ¼ c=4L (7)

This indicates that ear canals of different length have different

lowest resonant frequencies. More specifically, the lowest reso-
nance is inversely proportional to the length of the canal. Thus,
longer canals have a lower first resonance, as you might expect
from the general physical principle that the bigger something is,
the lower its ‘frequency’. (Consider the difference between the
length of the strings on a violin and those on a double bass).
Because frequency is equal to one over the period, this is
equivalent to saying that the period of the lowest resonant
frequency is directly proportional to the wavelength (again,
longer tubes have lower first resonant frequencies). It turns out
that the higher resonant frequencies are odd integer multiples (3,
5, 7 and so on) of the lowest resonant frequency.

Let’s see how well our simple formula predicts the peak in the
amplitude response of the ear canal. The first resonance for an
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open tube that is 2.3 cm (0.023 m) long should occur at a frequency
of 340/(4� 0.023) ¼ 3696 Hz. The next resonant frequency should
occur at 3� 3696 Hz ¼ 11,088, the next at 5� 3696 Hz ¼ 18,480 Hz,
and so on. As Wiener and Ross only performed measurements up
to 8 kHz, we can only compare the model results with the actual
results in the vicinity of the first resonance. Note first that the
resonant frequency that Wiener and Ross found (near 4 kHz)
corresponds well with the first resonant frequency we’ve
just calculated. Moreover, with an appropriate choice for the
damping characteristics, the model (dotted line below) can predict
the shape of the measured curve (solid line) quite well. An even
better fit of model to data could be obtained by assuming a
slightly different length for the ear canal:
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Of course, the acoustic effects of the external ear are not limited
to those caused by the ear canal. The head and pinna cause
acoustic ‘shadows’, so that the amplitude response depends upon
the orientation of the sound source relative to the ear. In order to
get a more complete view of the acoustic effects of the external ear
and head, consider the system head-plus-pinna-plus-ear-canal.
The input is a sinusoid delivered from different orientations
relative to the head (its amplitude determined at the centre of
where the listener’s head would be) and the output will be taken
as the sound pressure level at the eardrum. Defining the input
sound pressure level as that arising in the sound field without the
head present lumps together the effects of the head with those of
the pinna and ear canal.

If heads and ears were symmetric, we would get the same result
no matter which ear we measured. That is clearly not the case, so a
full understanding of the sound field presented to a particular
person at both ears would require measurements at both eardrums.
Here we will only present measurements made at the left eardrum.

Shaw has summarized diagrammatically the amplitude
responses obtained in several studies. The coordinate system
used to denote the angle of the sound source relative to the head
(known as the azimuth, y) is represented schematically in the inset.
In this set of measurements, the sound source is always presented
at the same height, level with the opening of the ear canal (in the
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so-called horizontal plane). So, for example, when y ¼ 01, the sound
is straight ahead of the listener. When y ¼ 901, the sound is
directly opposite the left ear and when y ¼ �901, the sound is
directly opposite the right ear. Varying the elevation of the sound
would add an extra complicating factor which, although
important for a thorough understanding of the effects of the
outer ear, will not concern us here:

st

s

As you can see, the amplitude responses vary greatly depending
upon the position of the sound relative to the ear measured.
However, these variations only occur when the input sinusoid has
a wavelength that is comparable to, or smaller than, the head and
pinna. This principle applies generally—the transmission of a
sinusoid in a sound field is only affected by objects that are
comparable in dimension to, or larger than, the wavelength of the
sound. So, the acoustic effects of the head are most marked at
frequencies above about 1.5 kHz, equivalent to wavelengths
smaller than 22.7 cm (the approximate diameter of an adult male
head). These changes in the amplitude response are most
dramatic for negative values of y, where the sound source is on
the opposite side of the head from the ear being measured. For
these angles, the amplitude response can show a strong attenua-
tion of sound (for frequencies near 10 kHz or so).
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Similarly, the measured amplitude responses have gains that
are small for low frequencies (near 200 Hz and below), no matter
what the value of y. In other words, the sound field is not affected
in this frequency region. This is not surprising, as a sinusoid of
200 Hz has a wavelength of about 1.7 m (about 5½ feet),
dimensions not approached by any part of the ear or head, at
least of a person!

Note too the resonant peaks at about 2.5 kHz that can be seen
for all angles of presentation. These result from a quarter-
wavelength resonance arising from the combined ear canal and
concha (the shallow bowl in the pinna that leads directly to the ear
canal). This resonance is at a lower frequency than that seen for
the ear canal alone, because the concha effectively adds to the
length of the ear canal. Because the rest of the pinna-plus-head
response doesn’t have sharply defined features between 2 and
4 kHz (peaks or valleys), the effect of the combined concha and ear
canal always shows up in the output of the entire system.

Of course, this is only the first stage in the chain that leads to
perception of a sound. In a normal listening situation, the next
system (the middle ear) would be presented with a signal that has
already been affected by the ear canal, pinna and head in a way
which depends on the position of the sound source and the
frequency content of the sound presented. When we measure
transmission by the middle ear, however, we don’t normally use
signals that have been modified by the outer ear. Rather, we apply a
reference signal that is constant at the input of the middle ear (say,
at the eardrum) so as to determine its transmission properties alone.
Middle ear

We’ve already examined the middle ear system in Chapters 4 and
6, describing investigations of the displacement of the stapes for
sinusoidal sound pressure variations applied to the tympanic
membrane in anaesthesized cats. You’ll recall that this system
(tympanic membrane-to-ossicles) was found to be LTI. Here, we’ll
be looking at the amplitude response of the middle ear in humans.
These experiments, by Puria, Peake and Rosowski, were perfor-
med on temporal bones obtained from cadavers. Although many
aspects of peripheral auditory function are very different in living
and dead people, it turns out that important aspects of middle
ear function are pretty much the same.

The amplitude response was determined on the basis of the same
input as was defined for cats (sound pressure near the tympanic
membrane) but with a different output. As you know (and which
we will discuss more fully in the next section) the stapes moves in
and out of the fluid-filled cochlea (inner ear), setting up pressure
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variations which are an essential stage in hearing. Puria and his
colleagues decided to use these pressure changes as the output of
the middle ear, measured in the cochlear fluids near the stapes
footplate using a hydropressure transducer (a kind of underwater
microphone). Therefore, the ‘gain’ referred to in the y-axis of this
figure reflects, on a dB scale, the pressure level in the cochlear
fluids relative to the pressure level at the tympanic membrane:
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As you can see, the amplitude response is of the form of a band-
pass filter centred near 1 kHz, and with quite a broad bandwidth.
In other words, spectral components of sounds near 1 kHz are
transmitted extremely well through the middle ear, with little or
no relative attenuation of spectral components varying from about
500 Hz to 5 kHz.

Let’s see how far we have come in our journey through our
model of the auditory periphery.

The sound has been picked up by a microphone, transduced
into an electrical wave and then filtered by two systems in
cascade. You already know from Chapter 6 that it is readily
possible to calculate the total amplitude response of these two
systems from the individual responses. Since they are expressed
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on dB scales, it is a simple matter to add together the gains at each
frequency:
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As you can see, the combination of the outer and middle ear leads
again to a band-pass response, with its peak dominated by the
response of the ear canal plus concha, near 3 kHz. This peak has a
direct impact in determining the frequencies of sounds we are
most sensitive to. Broadly speaking, it is perhaps not too
surprising that sinusoids transmitted effectively through the
auditory periphery can be detected at lower levels than those
transmitted less effectively.
The movement of the basilar membrane

We now come to the inner ear, a crucial part of the auditory
system. Not only is the input signal radically transformed in its
structure here, it is also converted—or transduced—from a
mechanical signal into an electrical one. This signal can then be
handled by other parts of the nervous system. Before embarking
on a detailed analysis, let’s first describe its anatomy and general
functioning.

Although the inner ear also includes the organ of balance
(the semicircular canals) the main structure that will concern us is
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the cochlea. The cochlea is a fluid-filled tube coiled in the shape
of a snail. This coiling is pretty much irrelevant to what the
cochlea does, so we’ll visualize it unrolled to give a clearer
picture:

The cochlear partition runs down the length the cochlea, dividing it
into two chambers (scala vestibuli and scala tympani). Because the
partition does not quite reach the end of the cochlea, the two
chambers connect through a space known as the helicotrema. When
the stapes is pushed into the oval window by sound at the
tympanic membrane, the incompressible fluid causes the mem-
brane covering the round window to bulge outwards. Similarly,
when the stapes is withdrawn from its resting position, the round
window membrane moves inward. It, thus, acts as a sort of
pressure release, or ‘give’, to allow the inward and outward
movement of the stapes. Because the cochlea is surrounded by
rigid bone, the stapes would not be able to move without this
‘give’.

The cochlear partition is not simply a barrier but is itself a
complex array of structures, as this cross-section shows:
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As you can see, the cochlear partition is also a tube that, in a rolled
up cochlea, spirals along its length. It is separated from the
two scalae by membranes: Reissner’s membrane seems only to
serve as a dividing wall. Much more important functionally is the
basilar membrane, upon which are found the hair cells. Hair cells
are so named because they have cilia (which look like hairs)
sticking out from their tops. These bundles of cilia come near or
touch the tectorial membrane which lies across the top of all the
hair cells.

There are two types of hair cell. The inner hair cells (IHC) form a
single row running along the inner part of the cochlear spiral. At
the base of the IHCs are the endings of the fibres of the auditory
nerve which make synaptic contact with the hair cells. Note that
this is the first time in the system that we’ve encountered any
neural elements. Also important to cochlear function are the outer
hair cells, which are found in three rows, along the outer part of the
cochlear spiral.

Although the precise nature of the chain of events that leads
from sound to neural firing is still the subject of much controversy,
there is general agreement about the major stages. Roughly
speaking, this is what happens. The movement of the stapes in
and out of the oval window sets up a pressure wave in the
cochlea, which in turn causes the basilar membrane to vibrate. As
a result of this vibration, the cilia on the IHCs are bent (perhaps
due to a sliding motion between the basilar membrane and the
tectorial membrane), causing neurotransmitters to be released
from the base of the hair cells into the synapse.
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The transmitter diffuses across the synaptic gap and causes the
nerve to fire. The hair cells, thus, serve as transducers, trans-
forming mechanical vibrations into electrical pulses. The neural
‘spikes’ are then relayed to other parts of the nervous system.

Because IHCs only cause nerves to fire in those places where the
basilar membrane is set in motion (ignoring for the moment
the spontaneous firing that goes on even in the absence of sound),
the characteristics of this motion are crucial to an understanding
of the firing patterns eventually seen on the auditory nerve.
Again, there is much controversy, with agreement on certain
major principles.

The most important characteristic of the basilar membrane is
that it is selectively resonant. Not all parts of it vibrate equally well
to sinusoidal inputs of a particular frequency. Put the other way
round, different frequency sinusoids cause maximum vibration at
different places along the membrane. Because the basilar
membrane is narrower and stiffer at its basal end (near the
stapes) than it is at its apical end (near the helicotrema), the basal
end vibrates more to high frequencies than does the apical end.
Conversely, a low-frequency movement of the stapes causes the
apical end of the basilar membrane to vibrate more than the
basal end.

This was first observed directly by von Békésy (pronounced
BEH-kuh-shee) using a light microscope. He was able to measure
the amplitude of the vibration of the basilar membrane over a
significant portion of its length. At right are the results that
von Békésy obtained when he presented a sinusoidal input of
constant amplitude, at various frequencies, to the stapes of an
excised cochlea. You can see that as the sinusoidal input
increases in frequency, the peak amplitude of vibration occurs
more basally. Note that these curves represent the maximum
displacement undergone by any particular point on the mem-
brane—the details of the temporal aspects of the vibration have
been left out. In fact, every single point on the basilar membrane
that moves would be moving in a sinusoidal way at the
stimulating frequency.

It is important not to mistake these graphs for the amplitude
responses we’ve discussed so frequently. Measuring an amplitude
response would necessitate the presentation of a number of
sinusoids of different frequency. Because each of these curves is a
measure of the motion resulting from a single input frequency,
they cannot be amplitude responses. They are often known as
excitation patterns because the response pattern of the entire basilar
membrane to a single sound (or excitation) is shown. We can,
however, combine together the information from these and a
number of other similar curves to obtain the amplitude response
of a single point on the basilar membrane. This now familiar way
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of thinking about a system (here, the basilar membrane) may be
schematized as shown here:

All that needs to be done is to move the stapes sinusoidally at a
variety of frequencies and measure the amplitude of the response
at a single point on the basilar membrane. This results in the
familiar amplitude response. (We’ll ignore phase in this discus-
sion although such information can be important.) Of course, for a
full understanding of the basilar membrane it would be necessary
to measure the frequency response at a number of different places.
Here are two such curves that von Békésy measured:

As the curve on the left was obtained from a place on the basilar
membrane more apical than that associated with the curve on the
right, it is more responsive to low frequencies.

Curves such as these should look very familiar to you—they are
nothing more than band-pass filters. One way to think of the
basilar membrane, then, is as a sort of filter bank (like those
described in Chapter 11). Each point on the basilar membrane
corresponds to a band-pass filter with a different centre frequency.
As one goes from the base to the apex in the cochlea, the centre
frequency of the band-pass filter decreases. This adds a further
stage in our model of the auditory periphery:



The movement of the basilar membrane 273
middle ear

basilar
membrane

outer ear

A realistic model would mean an enormous number of filters, of
course. Here, for practical purposes, we only show four. Using
this model, we can predict the response of any point on the basilar
membrane to any input, in the same way we would do for any
LTI system. Essential, of course, is the assumption that the
transformation between stapes and basilar membrane movement
is, in fact, linear. von Békésy claimed that it was in his
preparations, and gave as supporting evidence the fact that
‘ . . . the amplitude of vibration of the cochlear partition, as
observed at a particular point, increased exactly in proportion to
the amplitude of the vibration of the loudspeaker system . . . ‘
which drove the stapes. In other words, he showed that the
system was homogeneous.

Some decades after von Békésy’s work, however, Rhode
showed that the movement of the basilar membrane is highly
nonlinear, at least in squirrel monkeys. He also tested homo-
geneity, in essentially the same way as von Békésy, but with quite
different results. Here are Rhode’s data for 7.4 kHz, which show
the amplitude of the movement of the basilar membrane at a fixed
point, as a function of the input sound pressure level. (You have
already seen these data in the figure on page 54:
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It’s easy to see that the amplitude of basilar membrane movement
does not grow linearly with the amplitude of the input sound. In
other words, the system is not homogeneous. The dashed line
shows what would be expected if it were. This nonlinearity can be
ascribed to some mechanism in the cochlea since Rhode (and
previous researchers) demonstrated that the middle ear system is
linear (see below).

This result makes the task of characterizing the movements
of the basilar membrane much more difficult than it would be for
an LTI system. In the simplest case, suppose we only wanted to
know the amplitude of the response of the basilar membrane
to single sinusoidal inputs. If the system were homogeneous, we
would only need one amplitude response, measured at an
arbitrary input level for each frequency. We could then use
homogeneity to determine the response to any sinusoid. Since the
system under consideration here is not homogeneous, we need to
look at its amplitude response at a number of levels to know what
it will do. Rhode did just this and showed that the shape of the
amplitude response did in fact depend on the input level used in
the measurement, as shown on the next page.

The measurements were made at 70, 80 and 90 dB SPL but are
normalized to the amplitude of the malleus displacement. (Rhode
used this instead of the stapes displacement, as it was more
convenient to measure.) Note that the three curves are distinct in
the frequency region where the particular place measured on the
basilar membrane responds best; they overlap outside this region. If
the system were linear, all three curves would overlap completely.
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A nonlinearity like this makes it difficult to apply in a
straightforward way many of the concepts we’ve developed.
Take bandwidth, for example. In a linear system it is possible to
define a single value for a filter’s bandwidth because it does
not depend on the level of the input signal. If we tried to
estimate the bandwidth of cochlear ‘filters’ from Rhode’s data,
however, a single number would not do. Here the bandwidth of
the filter increases with increasing level. In such a system,
‘bandwidth’ would have to be a function of level and not a
single value.

It’s interesting to note that the cochlear ‘filters’ seem to
operate linearly for frequencies relatively remote from their
centre frequencies, but are highly nonlinear for signals near their
centre (in the so-called ‘pass-band’). This can also be seen in the
following diagram where the peak amplitude of vibration for
one place on the basilar membrane (most sensitive to 7.4 kHz)
is plotted as a function of level for a number of different
frequencies:

As we saw previously, when the stimulating frequency is near the
centre of the pass-band, the amplitude of the basilar membrane
vibration grows at a much smaller rate than it would in a linear
system. The data for 7.4 kHz are in fact the same used in con-
structing the figure on page 274, which used linear scales because
it is easier to understand homogeneity that way. Here we use
logarithmic scales for both axes (log amplitude versus dB SPL).
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If this system were linear, the amplitude of movement of the
basilar membrane would increase proportionately with sound
pressure level for all frequencies. In other words, a factor of 10
increase in the sound pressure level (20 dB) would lead to a factor of
10 increase in the amplitude of movement of the basilar membrane
(again 20 dB). Therefore, on an input–output graph like this, all LTI
systems would be characterized by a straight line with a slope of 1
(meaning the output grows by 1 dB for each 1 dB increase in the
input). Although the system is homogeneous for frequencies of 1
and 9 kHz, it is not homogeneous for the other three frequencies—
those in the centre of the pass-band of the ‘cochlear filter’. This is
another reflection of the finding that the amplitude response curves
taken at different levels only overlap outside the ‘pass-band’.

Contrast these data with those Rhode obtained when he tested a
part of the middle ear for homogeneity. Here he measured the
peak amplitude of the movement of the malleus as a function of
sound pressure level, and found homogeneity at all frequencies
(see over). Note how each 20-dB change in input level leads to a
factor of 10 change in the measured amplitude of the malleus
motion. In short, the amplitude of the malleus movement is
proportional to sound pressure level.

The causes of the discrepancies between von Békésy’s and
Rhode’s results on basilar membrane vibration arise from crucial
methodological differences between the two studies. Almost
certainly the essential one is that von Békésy always used
preparations from cadavers. Rhode used live animals and found
the nonlinearity to disappear very quickly once the animal had
died. Also, von Békésy’s technique necessitated the use of
extremely high signal levels (up to 140–150 dB SPL) in order to
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make the movements visible, whereas Rhode used levels that
would be encountered in everyday life. Nonlinearities in basilar
membrane movements have since been found many times by
other groups of experimenters in cats, chinchillas and guinea pigs,
and there is now a general agreement that the system is nonlinear.

The details of this controversy are, for our purposes, less
important than the way in which the concepts of linear systems
analysis pervade the entire discussion. LTI systems serve as a
benchmark against which other systems can be compared; hence
much effort goes into determining the exact nature of the departures
from linearity found in a nonlinear system. Therefore, when Rhode
claimed that basilar membrane motion is nonlinear, he did so on the
basis of what would be expected of a linear system. This is yet
another reason why an understanding of linear systems analysis is
crucial to appreciate discussions of even nonlinear systems.

In terms of our model then, we would have to implement non-
linear filters in the filterbank meant to represent basilar membrane
movement. In fact, this is not as complicated as it might appear, and
many appropriate algorithms for doing nonlinear filtering are
available. The details of those won’t concern us here. We still need
to develop at least one more stage in the model to get to auditory
nerve firing.
Transduction by the inner hair cells

Up until this point, we have only been talking about mechanical
signals, which is to say, those concerning either movement or
changes in pressure. In order for any information about sound in
the outside world to be relayed to the brain, it needs to be
converted into an electrical code, as firings on the auditory nerve.
This transduction, as mentioned above, is carried out by the IHCs.
We will not describe the outer hair cells, although there are three
times more of them than the IHCs (three rows compared to one).
What has become clear over the last 40 or so years is that the outer
hair cells are active and can move, and thus amplify the response
of the basilar membrane, especially at low sound levels. In other
words, they are responsible for the crucial nonlinearities in basilar
membrane movements. However, they play no direct role in
transduction, so we will not discuss them further here.

The vast majority of afferent nerve fibres (that is, those
carrying information from the ear to the brain) synapse on a
single inner hair cell (IHC), with each hair cell having about
10–30 nerve fibres synapsing to it. Therefore, in order to under-
stand the firing on a particular auditory nerve fibre, we only
need to consider a single IHC and the movement of the
basilar membrane where that IHC lies. Here you can see a



278 Applications to Hearing
schematic of a single IHC, with two auditory nerve fibres
synapsing to its base:

stereocilia

auditory nerve fibres

Imagine now presenting a sinusoid at the tympanic membrane.
This would create a sinusoidal basilar membrane motion at the
frequency of the stimulating sinusoid, with maximum vibration at
a particular place on the basilar membrane, as determined by its
resonant properties. This, in turn, causes the stereocilia at the top
of an IHC in the appropriate place on the basilar membrane to
vibrate back-and-forth at the same frequency. When the stereocilia
move towards the tallest part of the hair bundle, neurotransmitter
is released into the synaptic cleft (the tiny gap between the hair cell
and auditory nerve fibre ending), making the nerve more likely to
fire. When the stereocilia move the other way, neurotransmitter is
taken up out of the cleft, making the nerve less likely to fire.
Therefore, as long as there is time for the neurotransmitter to be
injected and removed from the synaptic cleft, the nerve will tend
to fire in synchrony with the stereocilia movements—at the same
phase of the stimulating sinusoid. Here, for example, is the
genuine firing pattern of an auditory nerve fibre to a section of a
300 Hz sinusoid:

10 ms
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Nerves don’t fire on every cycle of the stimulating wave, but

when they do fire, it is at a similar point in the cycle of stereocilia
movement (here when the sinusoid is at its lowest value).
Because the movement of neurotransmitter in and out of the
synaptic cleft takes some time, this synchrony is only present for
sinusoids up to certain frequencies. Roughly speaking, syn-
chrony is strong up to about 1.5 kHz, and then tails off, becoming
undetectable for frequencies above about 5 kHz. At that point,
the nerve fires without regard for the phase of the stimulating
waveform, because the neurotransmitter does not have time to
be released and cleared. Therefore, there is a more or less
constant amount of it in the synaptic cleft through the time
corresponding to one period.

We somehow need to account for these processes (the synchrony
of nerve firing and its dependence on frequency) in the IHC
portion of our model of the auditory periphery. It turns out to be
easy to do this with a combination of rectification and a low-pass
‘smoothing’ filter, a concept you have met before when discussing
the construction of spectrograms. For making spectrograms, we
used full-wave rectification, because we wanted to account for all
the energy in the wave. In order to model the way the IHC only
releases neurotransmitter when the stereocilia bend in one
particular direction, we use half-wave rectification. Following the
rectification with a low-pass filter with a cut-off of about 1.5 kHz
will filter out any fluctuations that would lead to synchrony at high
frequencies. Our model is now complete, and looks like this:

Before discussing how this model could be used, let’s try to get a
better feel for how the rectification and smoothing would simulate
what happens in the IHC. Consider putting a 1 kHz sinusoid into
the model. Assuming it is sufficiently intense, this will appear
strongly as a sinusoid at the output of one of the band-pass filters
simulating basilar membrane filtering with a centre frequency
near 1 kHz. Half-wave rectification and smoothing would lead to
the waveforms here:
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input wave

1 kHz

rectified

smoothed

time (ms)

0 2 4 6 8 10 12

You can think of the final waveform at bottom as representing
the amount of neurotransmitter in the synaptic cleft, or the
probability that the nerve will fire at any particular moment.
When the wave representing the amount of neurotransmitter is
high, the nerve is likely to fire. When it is low, it is very unlikely
to fire. At the 1-kHz frequency used here, the strongly
fluctuating amount of neurotransmitter means that the nerve
firings would be highly synchronized to the input wave. Perhaps
the best measure of synchrony is the extent to which the peaks
and valleys in the amounts of neurotransmitter vary. Here, the
valleys go right down to the amount of neurotransmitter present
in the absence of any sound, so this represents the maximal
degree of synchrony.

Let’s now consider an input wave of 2 kHz, going through a
channel tuned near 2 kHz. As you can see, there are still
strong fluctuations in neurotransmitter although the valleys don’t
go right down to what you get with no sound at all. Therefore,
you would expect some synchrony between the neural firings and
the stimulating waveform, but not as strong as that found at
1 kHz:

input wave

2 kHz

rectified

smoothed

time (ms)

0 8642 10 12
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For an input wave at 3 kHz, there is even less evidence of
fluctuations in the amount of neurotransmitter. We would,
therefore, expect little synchrony of nerve firing with the
stimulating wave:

input wave

3 kHz

rectified

smoothed

time (ms)

0 2 4 6 8 10 12

Finally, at 6 kHz, the amount of neurotransmitter in the
synaptic cleft increases as the sound is turned on, but
there are no fluctuations related to sound frequency at all.
Note again that it is not the half-wave rectification that is
responsible for this loss of synchrony—it is the low-pass filtering
that matters.

input wave

6 kHz

rectified

smoothed

time (ms)

86420 10 12
Making an auditory spectrogram
It probably has not escaped your attention that the model of
the auditory periphery that we have developed in this chapter
is structurally very similar to the collection of systems we
described in Chapter 11 for making spectrograms (p. 225). In
both cases, an input signal is fed to a filter bank, with each
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channel output being rectified and smoothed. The only significant
difference in overall structure is that the auditory model has
linear band-pass filters to represent the effects of the outer and
middle ear. These serve only to amplify or attenuate various
frequency regions but otherwise do not have a large effect on the
representation of the information within most of the audible
range of frequencies.

Given this similarity then, it might not be too surprising for you
to learn that a special kind of spectrogram can be made using an
auditory model, a so-called auditory spectrogram. All we need do is
to take the model outputs and convert the amplitude variations
into the darkness of a trace, exactly as was done for ordinary
spectrograms. Before showing you an auditory spectrogram
however, let us clarify two important differences in detail (apart
from those we have already mentioned) between the processing
that goes on for the two kinds of spectrogram.

* All the filters in a filter bank used to make an ordinary spec-
trogram have the same bandwidth, whether that is a wide
or narrow band. In the auditory periphery, bandwidths
increase as we move from the apex to the base of the
cochlea—in other words, they increase with increasing
centre frequency. We need to include this aspect in our
auditory spectrograph. For frequencies of about 1 kHz and
above, the bandwidth of an auditory filter is approximately a
fixed percentage of its centre frequency. For frequencies
below this, the percentage changes, but the absolute
bandwidth still always increases with increasing frequency.
As it turns out, at low frequencies, the bandwidths of the
auditory filters are similar to the typical narrow band
analysis in a standard spectrogram. But they increase
steadily, becoming wide band at frequencies of about 2 kHz
and above. This means that harmonics in a complex periodic
wave are resolved and hence visible at low frequencies. At
high frequencies, the harmonics are unresolved, and beat
together, so result in striations, just as we saw in wide-band
spectrograms previously.

* The spacing of the filters in a filter bank used to make an or-
dinary spectrogram is linear, whereas an auditory filter
bank has a spacing that corresponds to the way in which
sinusoidal frequency maps onto place on the basilar
membrane, a so-called tono-topic map. For frequencies of
about 1 kHz and above, this mapping is logarithmic. For
frequencies below 1 kHz, the mapping is somewhere
between linear and logarithmic. So, for example, if you
make a spectrogram over the frequency range from 20 Hz to
20 kHz (the audible range of frequencies), half of an ordinary
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spectrogram is taken up by frequencies above 10 kHz,
which hardly matter at all to us. On an auditory spectro-
gram, however, the midpoint would be at about 1.8 kHz,
which is a reasonable reflection of the relative importance of
these two bands.

We’ll only look at the auditory spectrogram for one
particular wave, one for which you have already seen ordinary
spectrograms (p. 241). This is a periodic train of narrow pulses with
a fundamental frequency of 100 Hz, which has been put through a
cascade of two resonators, one at 700 Hz and one at 2200 Hz:
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Going from top to bottom, you can find the waveform, and
three different kinds of spectrogram. The time axis is the same for
all the four panels, but look at the frequency axes on the
spectrograms. The ordinary spectrograms have, of course, a linear
scale, but the auditory spectrogram is more or less logarithmic, at
least for the frequency range above about 1 kHz. You can confirm
this by taking the ratios of successive numbers on the axis, which
are about equally spaced in distance. So, 4578/2412 ¼ 1.90 and
2412/1285 ¼ 1.88. But the scale is not logarithmic at low
frequencies, because 278/52 ¼ 5.35, which is not close to 1.90 or
1.88.

Let’s look first at the low frequencies, where we would expect
the auditory spectrogram to look like a narrow band one. In fact,
you can see evidence of 3–4 separate harmonics resolved, at the
frequencies indicated by the arrows at the bottom right. But what
is unlike the narrow band spectrogram is that you can see
evidence of strong phase locking. So in the frequency region near
100 Hz (bottom arrow), you can see one ‘pulse’ per period. At
200 Hz (middle arrow), you can see two pulses per period
(corresponding to a frequency of 200 Hz) and so on.

Round about the 7th harmonic, the trace gets darker,
which results from the spectral prominence in the wave there,
labelled R1 (resonance 1). At higher frequencies, especially near
2.2 kHz, where the other spectral prominence is (R2), the
harmonics are no longer resolved, so features very similar to
those in the wide-band spectrogram can be seen. This corre-
sponds to the striations normally associated with a periodic
wave.

Obviously, there is much more we could do in terms of
understanding the representation of various acoustic features in
an auditory spectrogram. For the moment, the most important
aspect of this exercise is to show how many of the concepts you
have learned with regards to systems and signal analysis can
clarify processing in the auditory periphery.
Exercises

1. Here is a table of the speed of sound in various media.
Calculate the wavelengths corresponding to frequencies of
500 Hz, 2 kHz and 10 kHz. In which medium would the first
resonant frequency of the auditory ear canal of a particular person
be lowest and highest?
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Medium (m/s) Speed of sound

Air 340

Water 1450

Oxygen 317

Hydrogen 1286
2. Calculate the first resonant frequency of the auditory ear canal
(length ¼ 2.3 cm) of an adult female scuba diver while in air and
under water. Compare the two values.

3. How much would the frequency of the first resonance of the
ear canal change over the course of life if it was 2 cm long at birth,
and reached 2.4 cm in adulthood?

4. Discuss all the reasons you can think of for the advantages of
saturating nonlinearities in natural systems.

5. On page 264, in attempting to model the amplitude response of
the ear canal, we noted that an even better fit of model to data
could be obtained by assuming a slightly different length for the
ear canal. Would a better fit be obtained if the assumed length of
the meatus was longer or shorter, and why?

6. Sound waves are affected by the head when they have a
wavelength that is comparable to, or smaller than, the head and
pinna. For an adult, the acoustic effects of the head are most
marked at frequencies above about 1.5 kHz, equivalent to
wavelengths smaller than 22.7 cm (the approximate diameter of
an adult male head). What frequencies would be most affected for
a child with a head size of 15 cm?

7. The motion of the middle ear ossicles can be modelled
approximately as a pendulum (a weight suspended from a
pivot so it can swing freely). The period of swing of a pendulum
(T) is given by the formula:

T ¼ 2p
ffiffiffiffiffiffiffiffi

L=g
q

where L is the length of the pendulum and g is the local
acceleration due to gravity (9.8 m/s2). What is the length of
suspension of the middle ear ossicles for a frequency of 1 kHz
(roughly the centre frequency of the middle ear system)?
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