TWO-LEVEL RECOGNITION OF ISOLATED WORD USING NEURAL NETS

I.S. Howard and M.A. Huckvale

University College London, UK

INTRODUCTION

This paper describes a neural-net based isolated
word recogniser that has a better performance on
a standard multi-speaker database than our
reference Hidden Markov Model recogniser. The
complete neural net recogniser is formed from two
parts: a front-end which transforms the complex
acoustic specification of the speech into a
simplified phonetic feature specification, and
a whole-word discriminator net. Each level was
trained separately, thus considerably reducing
the time necessary to train the overall system.

Isolated Word Recognition

Treating isolated word recognition (IWR) as a
pattern classification problem, performance is
related to the discriminability of the pattern
vectors (words) in pattern space. There are
three problems associated with the recognition
of isolated words that weaken discriminability:

1) Occasion-to-occasion variations in the
productions of words create large non-
linear distributions of pattern vectors.

2) Increasing vocabulary size reduces the
average distance between pattern centres.

3) Changes in speaker can cause short-term
acoustic specifications of words to over-
lap.

Statistical models have proved adept at tackling
1), and Hidden Markov Models have been shown to
accommodate occasion-to-occasion variability.
HMMs have more problems with 2) and 3). With 2)
since each model is trained on the examples of
a particular word only, there is no constraint
that models of different words should not
overlap. With 3) the statistical model of a word
should be conditioned on speaker characteris-
tics, but unfortunately there is no mechanism by
which this might be done.

Automatic Speech Recognition Using The Multi-
Layver Perceptron

We know that neural-net pattern recognition
techniques, such as the multi-layer perceptron
are capable of performing complex non-linear
pattern recognition tasks, Rumelhart et al (1).
Previous experiments have shown them to have
similar performance to HMM recognisers on a
standard digit database Peeling and Moore (2).
Thus neural nets are also capable of addressing
problem 1). However, it is possible to build nets
which discriminate between patterns, not only
identify them, and so address 2) since a network

can be constructed that determines which aspects
of a pattern vector are important for discrimi-
nation. Another advantage offered by nets is
their ability to make use of contextual infor-
mation. Thus neural nets may also be able to
address 3) since their classification procedure
is sensitive to global aspects of the pattern
vector, aspects which may be characteristic of
the speaker.

Neural networks have other useful properties for
the word-recognition problem: Their uniform
structure makes them well suited for real-time
hardware implementations (e.g. Howard and Wal-
liker (3)), their intrinsic redundancy allows
them to degrade gracefully in noise, and they
appear well suited for solving a wide range of
different problems, at different abstract lev-
els, in speech processing. Consequently they
provide a formalism which can integrate process-
ing at the different levels into one system.
However there are severe problems in training
networks large enough to be useful in large
vocabulary speech recognition.

Incorporation Of Speech Knowledge

The Multi-Layer Perceptron (MLP) classifier in
its fully interconnected form constitutes a
pattern processing tool that is very general in
its transformation capabilities. Clearly the
more degrees of freedom a network has, the harder
it will be to train. That is, it will require
correspondingly more computation and training
data as its degrees of freedom increase. One may
expect advantages in lower training times and
need less training data in the case of a more
constrained network, providing the constraint is
appropriate for the task.

We believe that it may be helpful to incorporate
a priori knowledge in the network to ease the
optimization task. There has been recent
interest in specifying a_ priori some of the
structure in a MLP, Waibel (4). By specifying
network topology one limits the degrees of
freedom. By specifying the weights one may be
able to make the training simpler, provided one
can ensure that the optimization starts ‘‘nearer’’
the solution in weight space. Ideally, if
sections of the network can be completely
specified, no more further training would be
required. Modular construction of this type is
used widely in the solution of engineering
problems. It is important to note, however, that
the specification of weights in an MLP consti-
tutes ‘soft’ constraints which can be improved
or even undone by further training.



In order to incorporate speech knowledge into the
MLP a priori, it is necessary to have a suitable
model of speech. A hierarchical analysis for ASR
is appropriate because of the structured nature
of the speech generation process. The approach
we adopt here is to break the problem down into
two stages, to train these levels independently
and then to join them together. However, it is
necessary to be able to define the intermediate
representation that is used. One requires a more
abstract description of the quantity of inter-
est, without losing information useful in the
discrimination process. Such a representation
should then be simpler to process than the
original input data in order to achieve word
recognition.

Acoustic-Phonetic Intermediate Representation

The representation that we have chosen for our
experiments is based on a traditional phonetic
and phonological analysis of speech. It consists
of a time-aligned acoustic-phonetic feature
matrix, representing properties of the signal
such as voicing, frication, nasality and vowel
quality. This representation is useful not only
because it can directly related to a phonological
analysis of words, but alsc because these
features normalize cross-speaker differences
that occur at the acoustic-level. The bank of
feature detectors are trained using a time-
aligned transcription of the signal and so
enhance those aspects of the signal that are
necessary for word discrimination.

Woxrd Recogniser

The feature detector stage provides the input to
a word classifier network. In this way the
network can be trained in two steps. This two-
level training results in a network capable of
performing the required task with much less
training time than would be necessary than if the
network was trained together initially.

The use of the feature detector network has a
similarity with the TDNN of Waibel (5). The
difference is that we consider the replication
unit as a module that is capable of generating
the necessary transformation. Thus our approach
uses ‘cloning’ at the feature bank level, rather
than at the node level.

This paper describes an isolated word recogni-
tion experiment, using a standard database, in
which neural-net and standard approaches are
compared. The next two sections describes the
database and the experiment, while the following
section describes the results.

DATABASE

The database used for training and testing
comprised 8000 isolated digits, which were
recordings of 400 digits from each of the ‘least
consistent’ twenty speakers of the RSRE 40-
speaker digit database. All the digits had been
detected, cut from a recording and processing by
means of a 19-channel filterbank, Holmes (6).
The resulting output energies were then quan-
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tised into 16 levels in 20ms frames. The first
15 speakers were exploited for training mate-
rial, while the last 5 speakers were reserved for
testing.

Acoustic-Phonetic Feature Detectors

To train the acoustic-phonetic front end, each
digit was automatically annotated by a dynamic
programming time-alignment procedure. A time-
aligned feature matrix was then generated, for
each vocoder frame. More information appears in
Howard and Huckvale (7).

The input to the front-end MLP consisted of five
frames of vocoder data, spanning 100ms in time.
Thus each input had a context of two frames either
side of the labelled frame. The MLP had 34 hidden
units and 17 outputs, one for each feature. Full
connectivity was used between layers. The
training consisted of 25 passes over 100 digits
from each of the 15 training speakers. The
recognition performance of the feature detectors
on the test set was as follows: (percentages are
for the ‘equal-error’ point, i.e. where the miss
rate equals the false-alarm rate):

FEATURE PERFORMANCE
SIL (silence) 91.9%
FRIC (frication) 90.7%
voc (voicing) 93.0%
NAS (nasality) 84.8%
VFRIC (voiced frication) 76.9%
s (/s/ fricative) 93.4%
FTH (/£/,/T/ fricative) 75.1%
? (glottal stop) 88.8%
K-REL  (/k/-release) 86.2%
T-ASP (/t/-aspiration) 60.8%
EE-IH  (/i/,/I/ vowel) 90.0%
EH (/e/ vowel) 94.0%
UH (/V/ vowel) 94.4%
ER (schwa vowel) 77.3%
AW (/0/ vowel 98.9%
UE (/u/,/U/ vowel) 60.6%
R (/r/ glide) 95.3%
EXPERIMENT

Dynamic Time Warping Recogniser

To obtain good speaker-independent performance
using DTW, it is necessary to use a representa-
tive set of templates for each training speaker,
which leads to a large number of templates and
a large amount of processing. The dynamic
programming templates consisted of one example
of each digit from 5 of the training speakers (50
entries in total). The DTW recognisexr was run
with slope constrains p=1, Sakoe and Chiba (8).

Hidden Markov Model Recognizer

The HMM recogniser used was a continuous density
distribution type with training and recognition
performed on the input vocoder data by means of
the forward-backward algorithm, (e.g. Russell et
al (9)). Eight states were used, with no skip
transitions and with self-transition probabili-
ties initialised to 0.8.



Initial models for the Hidden Markov Models were
generated using the time aligned phonetic
transcriptions and average vocoder-data for each
phonetic label. The training data consisted of
10 repetitions of the digits for each of 5
training speakers. Re-estimation consisted of
running 20 iterations over the training set for
each digit. It was found that no increase in
recognition resulted from the use of more
iterations.

Multi-layer perceptron recognizer.

For the MLP experiments, the digits were
processed into fixed length vectors by centering
each one into a 50-frame (1 second) window,
padded with silence.

Three MLP word recognition networks were con-
structed:

MLPl) Linear MLP classifier operating directly
on the vocoder energies. The network had 19x54
inputs and 10 outputs.

MLP2) Linear MLP classifier operating on the
output of the featurebank as applied to the

digits. The network had 17x50 inputs and 10
outputs.
MLP3) Combined featurebank and linear MLP

classifier operating on the vocoder energies.
The network had 50 copies of the feature
detectors feeding a linear classifier, namely
(19x5 inputs, 34 hidden units, 17 outputs) cloned
50 times with 10 outputs, see Fig 1. This network
was initialised with the weights already ob-
tained from the featurebank and network 2.

Training of the networks was performed on 100
digits from each of the 15 training speakers
using back-propagation and fixed learning para-
meters. MLP1 was trained for 900 passes, MLP2
for 450 passes and MLP3 for 50 passes. The slope
of the error curve was used to gauge when training
was complete.

RESULTS
The overall digit recognition results obtained

from the various recognition experiments are
shown below.

a) DTW (vocoder data) 98.8%
b) HMM (vocoder data) 95.6%
c) MLP1l (vocoder data) 50.3%
d) MLP2 (features) 96.2%
e) MLP3 (combined) 96.2%

Confusion matrices for these results are given
in Fig 2. The best performance came from the DTW
algorithm, which also had the largest computa-
tional load at recognition time. Results for the
MLP2 network are better than published multiple-
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speaker results using simple MLPs (with a similar °

number of weights) on the same database by
Peeling and Moore (2). The combined network did
not increase its performance on the test set
despite further training, although performance
on the training set did improve from 98.1% to

99.6%, suggesting
material.

insufficiency of training

The confusion matrices for the feature-based
recognition shows particular difficulties be-
tween digits ‘zexo’ and ‘two’, this is probably
due to the failure of the ‘UE’ vowel quality
detector. Indeed the pattern of digit errors for
the network operating on the features is repeated
when the HMM is run on the feature data (Fig 2f).

CONCLUSIONS

We have demonstrated that is possible to train
a MLP network in two stages for the purpose of
IWR. The results show that the use of acoustic-
phonetic features provide a relevant intermedi-
ate representation for speech in the digit
experiment. In almost all cases, recognition
performance on the AP features was as good as the
raw acoustic data. The main problem was due to
the inadequacy of the features to discriminate
the digits **2’’ and **0’’. For the other digits,
performance was better using the AP features.

The MLP word classifier, with AP intermediate
representation, performed as well as the HMM.
The major benefit of the MLP approach was that
the AP feature net and the word classifier net
could then be combine into another net. To train
the latter from start-up would have required a
larger amount of processing than was required to
train the net in two sections.

The retraining of the combine MLP network was
very slow and resulted in no better recognition
performance. This is because the data set used
for training was too small for the task.

Comparison with the results obtained by Peeling
and Moore (2) in multiple-speaker IWR show that
for a comparable sized network with similar
numbers of weights, our network pexforms consid-
erably better on the harder task of speaker-
independent IWR. However, our linear MLP
operating on raw vocoder data performed worse
than the result obtained by RSRE for their linear
network. It is always possible that our MLP would
have improved with more training. The main point
is that it took longer to train than our 2~layer
approach that gave better performance.

FUTURE WORK

We believe it is necessary to allow for the
variability that occurs in speech in the
structure of the recogniser. That is to say, we
believe that provision should be made at
different levels of abstraction in the decoding
hieraxrchy to deal with this variability. This
could be achieved by the use of contextual input
at different levels in the decoding hierarchy.

It may be beneficial to include decimation in
time as the input signal is processed by higher
and higher levels in the decoding hierarchy.
This provides a means of data reduction that
would be necessary for the operation of systems
with large vocabularies.
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