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Abstract 
Recent research into the acquisition of spoken language has 
stressed the importance of learning through embodied 
linguistic interaction with caregivers rather than through 
passive observation. However the necessity of interaction 
makes experimental work into the simulation of infant speech 
acquisition difficult because of the technical complexity of 
building real-time embodied systems. In this paper we present 
KLAIR: a software toolkit for building simulations of spoken 
language acquisition through interactions with a virtual infant. 
The main part of KLAIR is a sensori-motor server that 
supplies a client machine learning application with a virtual 
infant on screen that can see, hear and speak. By encapsulating 
the real-time complexities of audio and video processing 
within a server that will run on a modern PC, we hope that 
KLAIR will encourage and facilitate more experimental 
research into  spoken language acquisition through interaction. 
Index Terms: speech acquisition, machine learning, 
autonomous agent, situated learning, toolkit 

1. Introduction 
Research into the machine acquisition of spoken language is 
still in its infancy. Most research has concentrated on sub-
parts of the problem, such as the segmentation of the speech 
stream into words [1], the discovery of perceptual categories 
corresponding to phonological choices [2] or the development 
of articulatory gestures through imitation [3]. Furthermore this 
research has mostly been "off-line" in the sense that the 
caregivers' spoken interactions are recorded, stored in a 
corpus, and processed in batches at a later time. 

Recently we have come to realise the importance of 
embodiment and real-time interactions as essential parts of 
spoken language acquisition [4] and to incorporate these 
elements within our research. In [5], for example, Howard and 
Messum showed that an infant can acquire the production of 
proto-words not by imitation but by being rewarded by a 
caregiver – the initial form of the words arising merely 
through the  infant exploring the capabilities of its vocal tract. 
In ongoing work we are looking at the use of adult 
reformulations of infant sounds to address the problem the 
infant has in associating and matching adult sounds to its own 
vocal productions. 

This focus on interaction also fits well with theoretical 
accounts that treat language acquisition as much a social 
process as a cognitive one [6]. In such accounts, language is 
acquired as a product of attempted meaningful communication 
with caregivers, rather than as the result of passive observation 
of language use among others. The implication is that better 
models of infant language acquisition and better performing 
machine learning systems will occur when interaction is given 
its proper value. For machine learning this will involve placing 

our learning system within an agent that is situated in the 
world where it can both sense its environment and 
communicate about it with caregivers. 

While many researchers may support the need for a 
situated autonomous agent for language acquisition, few 
researchers have the technical competence to implement such 
an agent. Existing tools in this area are extremely expensive 
and difficult to use; for example the iCub robot [7] costs 
thousands of pounds and requires an understanding of how to 
control an elaborate mechanical system. We believe the 
unavailability of suitable tools to support spoken language 
interaction has hindered research in the area. Thus to support 
and encourage further research we have developed KLAIR: a 
toolKit for Language Acquisition through Interactions in Real-
time. The main part of KLAIR is a sensori-motor server that 
implements a virtual infant on a modern Windows PC 
equipped with microphone, speakers, webcam, screen and 
mouse. The system displays a talking head modelled on a 
human infant, and can acquire audio and video in real-time. It 
can speak using an articulatory synthesizer and it can sense the 
position of parts of its virtual body. The server communicates 
with a background machine learning client that could run on 
the same or a separate computer. We aim to supply KLAIR 
free of charge to interested researchers. 

In this paper we describe and justify the decisions that 
went into the design of the KLAIR server. We provide some 
technical details about its implementation and give 
suggestions for research directions that could be facilitated by 
the system. 

2. KLAIR Design 
In this section we describe the design goals and justify the 
design decisions of the KLAIR toolkit. 

2.1. Why Interactive? 

Fundamentally, KLAIR is designed to instigate and to capture 
interactions between a machine learning "agent" and a human 
caregiver. On-line interactions allow the agent to observe how 
its outputs affect the behaviour of the caregiver, and for the 
caregiver to adapt their responses to the properties of those 
outputs. In addition there is often an assumption in off-line 
learning that the system or the caregiver are not changing with 
time over a series of communication events. But infants can 
easily tell the difference between live and recorded 
interactions [8] precisely because the interactions are adaptive 
to the state of the parties. 

There is a lot of work on language acquisition that 
concerns itself with discovering the underlying structure of 
language through passive observation of statistics of the 
surface form of language. For example, there are systems that 
"discover" words by looking for repeating spectro-temporal 
patterns in the speech signal [9]. The essential limitation of 
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this idea is that the learning agent does not know what objects 
are being referred to and cannot use information from the real 
world to establish whether two audio patterns are different 
versions of the name of some object or whether they refer to 
two different objects. For an agent to build a discriminative 
model of speech, which identifies lexical choices and 
establishes a phonology of language, it needs to discover 
through interaction which utterance components are "the 
same" and which are “different”. 

Interactions are also very useful to the agent in exploring 
how spoken communication works. From the earliest attempts 
at using facial expressions to indicate awareness to the use of 
vocalised sounds to elicit caregiver responses, interactions are 
essential to allow the agent to explore the range of useful 
motor outputs and to learn how to exploit them to gain reward 
in turn taking and dialogue. 

2.2. Why Multi-modal? 

If we situate an agent in an environment where both objects 
and spoken descriptions can be perceived, then the agent has 
the opportunity to learn both words and their meaning. It can 
then compute a probability distribution over words for some 
given object or event that can be used in both recognition and 
in expressive speech. Conversely, common characteristics of 
utterances used by caregivers in different situations may 
indicate conceptual links between objects: categories such as 
"toys" or "food" for example. 

Another important aspect of multi-modality is perception 
of self – awareness that motor outputs have sensory conse-
quences. Such exterioception and proprioception are essential 
in learning how to perform efficient motor control. Speech 
articulation is a skilled action [10] incorporating immediate 
compensation that can only be learned with feedback from the 
effects of the motor system. To learn control of a real vocal 
tract it is clearly essential to perceive its auditory effects, so 
that auditory goals can be maintained. But in addition it is 
important to know where the articulators are currently posi-
tioned, particularly in the presence of noise and perturbations, 
since in these cases feed-forward control will make inadequate 
predictions. Perrier [11] found evidence that mental represen-
tations of speech production are multimodal,  associated with 
regions of the acoustic, orosensory and motor control spaces, 
with the acoustic modality having the highest level of priority 

Multimodality also provides additional channels for 
communication between agent and caregiver. Sensing the 
caregiver's response to an utterance will be useful to the agent 
for reinforcement learning and for turn-taking. Using the 
agent's facial expressions to indicate emotional states may help 
the caregiver match feedback to the agent's needs. 

2.3. Why Embodiment? 

It is important that we embody the agent for several 
reasons. Having a vocal tract, even a rough simulation of one, 
not only provides important constraints on the kinds of speech 
sounds that can be generated but also provides constraints on 
the process of learning how to speak. If we hope to draw 
parallels with infants, then a vocal tract driven by motor 
commands is a pre-requisite. In addition, a vocal tract model 
makes the link between speech sounds and the shapes of the 
jaw and lips producing a more convincing illusion that the 
virtual infant is actually speaking. 

It would have been possible to build an interactive, multi-
modal agent without a face, but there are a number of reasons 
to think that making the agent look somewhat like a human 
infant will be advantageous. Firstly, we want to encourage our 

experimental subjects to talk to the agent in a (relatively) 
natural way, with an expectation that their responses will be 
similar to those they would have given to a real infant. An 
infant face will hopefully make their experience an engaging 
one, and may even provoke the use of motherese. Caregivers 
are also expert in decoding facial expressions and so these can 
be exploited by the agent to obtain required responses. For 
example, simply looking at the caregiver or looking at an 
object when speaking may indicate the difference between a 
command and an observation. 

Additionally, embodiment demonstrates the importance 
we put on modelling the agent to at least some degree on the 
capabilities of a human infant. Of course at the current state of 
technology, such modelling is extremely crude. But human 
infants are the only systems known to us that fully solve the 
spoken language acquisition problem and it may be that 
comparisons between the agent and an infant can give us clues 
as to how to improve the agent's performance. If we fail to 
make the link to infant development and behaviour, then any 
discoveries we make can always be criticised as not being 
relevant to the human situation. 

2.4. Why Real-time? 

We have already pointed out that the advantage of interactive 
learning is that the communication between agent and 
caregiver can develop and adapt from one conversational turn 
to the next. To achieve natural interactions the system must 
operate in close to real-time, that is the response of the agent 
to a caregiver's utterance must be quick enough for a response 
to be associated with a stimulus. The system must be able to 
control its vocal tract at typical articulatory rates if it is to 
make speech-like sounds. To give the illusion of a virtual 
infant, movement of the jaw and lips must be synchronised 
with the spoken output. Slowed down speaking or 
understanding would disturb the naturalness of infant-
caregiver dialogue.  

2.5. Why Separate Learning Agent from Sensori-
motor Server? 

KLAIR is implemented as two separate components: a 
machine-learning (ML) client and a sensori-motor server. 
There are a number of advantages to this configuration. Firstly 
the sensori-motor server contains all the real-time audio and 
video processing, that is both complex and close to the PC 
hardware. To create the illusion of presence, the agent must 
look as though it is constantly aware of its surroundings even 
if it is performing a lot of background processing. Thus the 
server application needs to be autonomous to the extent that it 
constantly presents a body state that changes smoothly over 
time. The background client polls the server to receive past 
input and queues motor commands to be executed in the 
future. While it is better for the client to "keep up" with the 
conversation, it is not operating under the same time pressures 
as the foreground simulation. 

Another advantage of the separation between client and 
server is that it allows other researchers to use the server even 
when they use different technologies and programming 
languages. We have chosen a very simple asynchronous 
function-call protocol to connect client and server which 
allows the client to be written in a number of different 
programming languages. The call protocol also operates over a 
computer network, allowing the client to reside on a different 
computer to the server, or even for the server to be controlled 
by multiple clients. 
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3. KLAIR Implementation 

3.1. Configuration 

The KLAIR toolkit is designed to run on a modern Windows 
PC with a microphone, speakers, webcam, mouse and screen. 
The central component is the sensory-motor server application 
that provides sensory input and motor output for a separate 
machine learning client application. The server runs multiple 
real-time processing threads, while the learning system runs 
asynchronously in the background and which polls the server 
to input audio, video and sensory signals, or to deliver facial 
expressions or vocal output. See Fig 1. The server can 
optionally log all I/O to disk for off-line processing. 
 

 
 

Fig 1. KLAIR and its interactions with a caregiver. KLAIR 
receives auditory input from a caregiver using a microphone 
A and corresponding visual input from a webcam C. These 
signals are processed and sent to the I/O manager. The I/O 
manger also receives incoming motor commands from a 
client application and passes them to a motor controller. 
Speech output B is generated using an articulatory 
synthesizer and its movements are synchronized to an 
animated head D. Objects in the environment E can be seen 
by both KLAIR and the caregiver. 

3.2. Motor Output  

The audio output stream is generated through an adaptation of 
the articulatory synthesizer of Shinji Maeda [12] to 
approximate an infant-sized vocal tract. This takes 10 
articulatory parameters as input: JW: Jaw Position, TP: 
Tongue Position, TS: Tongue Shape, TA: Tongue Expansion, 
LA: Lip Aperture, LP: Lip Protrusion, LH: Larynx Height, 
NS: Velopharyngeal port opening, GA: Glottal Aperture, FX: 
Fundamental Frequency, VQ: Voice Quality, and PS: sub-
glottal pressure. Dynamical smoothing of the parameters over 
time is applied using a critically-damped second-order spring-
mass system.  

 

Fig 2. KLAIR Infant Talking Head (from left to right): open 
jaw plus reduced lip spreading with neutral expression, 

displaying pleasure, and displaying confusion. 

The visual appearance of the server is as an infant talking head 
(see Fig 2). This is an OpenGL implementation of the talking 
head MASSY [13] adapted to appear as a virtual human 
infant. The head is controlled using three sets of animation 
parameters: one describing the articulatory movements of 
speech, one describing facial expressions, and one describing 
movements of the head and eyes. The 6 articulatory parameters 
are: vertical jaw opening, tongue advancement/retraction, 
vertical tongue dorsum position, vertical tongue tip position, 
vertical lip opening, and lip spreading/protrusion. These 
parameters have been designed to enable the display of 
visually distinguishable German and English phonemes. They 
are derived automatically from a linear combination of the 
control parameters of the articulatory synthesizer, where the 
coefficients are manually optimised for the best match of vocal 
tract shapes in both parameter models. There is the possibility 
for a unified parameter model in a future version of the toolkit.  

The 23 facial expression parameters are: inner eyebrow 
riser, outer eyebrow riser (left/right), eyebrow depressor, upper 
and lower eyelid depressors (l/r each), cheek raiser (l/r), nose 
wrinkle (l/r), nose wings opener, upper and lower lip raisers 
and protruders, lip stretchers and depressors (l/r each), and jaw 
advancer and side shifter. A huge variety of facial expressions 
– e.g. for displaying emotional states – can be obtained by 
combining these facial expression parameters. The set of 
animation parameters is inspired by action units of the facial 
action coding system (FACS, [14]) but is in contrast to FACS 
designed for the generation of facial expressions instead of 
their description. Fig. 2 shows examples of the articulation and 
facial expressions of the infant talking head. 

3.3. Sensory Input 

The audio input stream delivers information about the 
loudness, pitch and timbre of sounds currently being acquired 
from the microphone or generated by the articulatory 
synthesizer. A psychoacoustic model of the auditory periphery 
is used to deliver estimates of loudness. An autocorrelation 
analysis provides estimates of pitch, while an auditory 
filterbank based on the channel vocoder provides estimates of 
spectral envelope across 24 frequency channels. Estimates are 
provided in real time at 100 frames/sec. 

Video capture is performed using the Windows VfW 
interface. The lowest supported resolution is 320×240 pixels 
at 10 frames/sec. Captured frames are each converted to an 
RGB bitmap. Future enhancements of the toolkit may include 
some level of visual feature representation. 

The client can also obtain proprioception and 
exterioception input from the server. Proprioception input 
returns the current vocal tract configuration, including 
information about articulator contact. Exterioception input 
converts mouse movements to a form of touch sensation, 
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depending on whether the mouse cursor is over the visualised 
face. 

3.4. Machine Learning Client 

The ML client contains all the machine learning components 
used in experiments with the toolkit. The client communicates 
with the server through asynchronous remote procedure calls 
(RPC). We anticipate a rather slow polling rate of about 10 
calls/sec, transferring 10 audio frames and one video frame per 
call, but higher rates are possible. The server will maintain a 
short history of frames for when the client falls behind. We 
have endeavoured to make the interface as simple as possible 
and not to restrict the computer languages in which the 
executive may be programmed by toolkit users. In particular 
we provide a MATLAB interface to the RPC mechanism. 

4. Research potential 
Our current work being carried out with elements of KLAIR is 
in the modelling of a non-imitative account of the 
development of infant speech production that includes natural 
physiological constraints such as those imposed by speech 
breathing [15]. This requires interactivity since the model uses 
caregiver reformulations to first reinforce the discovery of 
simple speech sounds and then to learn a mapping between 
caregiver and infant speech.  

However we believe KLAIR will be of interest to 
researchers in a much wider range of spoken language 
acquisition topics, for example: 
Pre-linguistic development:  
� Listening and responding to speech activity directed to the 

agent with head turns and facial expressions 
� Learning to take turns in speaking 
Perceptual development: 
� Recognition of caregiver's voice 
� Discrimination between utterance functions on the basis of 

prosody and voice quality 
� Development of phonological categories in perception 
Production development: 
� Vocal control, breath control and prosody 
� Babbling and imitation 
� Development of an inventory of articulatory gestures 
� Refinements of motor plans to match perceptual categories 
Linguistic communication: 
� Learning the names of objects & actions 
� Use of speech to satisfy desires or needs of the agent 

5. Conclusions 
In this paper we have presented some arguments for the use of 
real-time interactions with a situated autonomous agent in 
spoken language acquisition research. We have presented the 
KLAIR toolkit which we hope will make research in this area 
much more accessible to new research workers. We have given 
examples of some applications where the toolkit may be used 
for experiments. The toolkit will be released for public 
download prior to September 2009. 

In future versions of the toolkit we hope to add more 
functionality within the server to emulate lower-levels of 
processing. For example, we may add feature level 
representations on top of the raw acoustic and visual data, 
such as sparse coding. We would hope to add more realistic 
dynamical constraints to the articulatory synthesizer and to the 
talking head. We also hope to develop a library of common 
pattern recognition and machine learning algorithms to help 

users build client applications. This and example clients will 
be shared through a dedicated web site for the KLAIR project.  
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