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ABSTRACT
Phonologically constrained morphological analysis (PCMA)
is the decomposition of words into their component
morphemes conditioned by both orthography and
pronunciation. This article describes PCMA and its
application in large-vocabulary continuous speech
recognition to enhance recognition performance in some
tasks.  Our experiments, based on the British National Corpus
and the LOB Corpus for training data and WSJCAM0 for test
data, show clearly that PCMA leads to smaller lexicon size,
smaller language models, superior word lattices and a
decrease in word error rates.  PCMA seems to show most
benefit in open-vocabulary tasks, where the productivity of a
morph unit lexicon makes a substantial reduction in out-of-
vocabulary rates.

1. INTRODUCTION
In this paper we present a novel approach towards the
enhancement of language modelling that is achieved through
phonologically constrained morphological analysis (PCMA).
PCMA is the decomposition of word tokens into their
component affixes and stems constrained by both
orthography and pronunciation. In its simplest form, PCMA
involves the analysis of words into a sequence of sub-word
units which express the morphological structure of the word
subject to the constraint that the pronunciation of the whole is
derivable simply from the concatenation of the pronunciation
of the parts. As an example, PCMA accepts the
decomposition of abandoned into abandon+ed since the
pronunciation for the whole string may be concatenated from
the parts. On the other hand, academician is not decomposed
into academic+ian for the reason that the parts do not allow
direct derivation of the pronunciation.

This paper describes our investigations into the use of PCMA
for speech recognition based mostly on the 100-million-word
British National Corpus (BNC; [1]) for training and test
material. In the following sections we describe the
preparation of the training and test data and present baseline
statistics obtained with  the Abbot connectionist/HMM
continuous speech recognition system ([2]; henceforward
referred to as Abbot) from conventional word-based models.
We then describe the PCMA approach towards language
modelling in detail. We then present statistics obtained from
PCMA models and discuss comparisons with word-based
language models in terms of lexicons, lattice scoring,
perplexity measures, and finally word accuracy rates.

2. DATA AND BASELINE STATISTICS

2.1 Text and speech data

The BNC was used as a basis on which both training and
test data sets were selected. There are 4,124 files in the
corpus, 3,209 written and 815 transcribed speech. The
written texts were randomised and 10 chunks of 10 million
words were selected for use as training sets. The remainder
of the written texts were divided into 10 chunks of one
million words each for use as test sets.

To establish baseline statistics, two sets of language
models were trained from the first 10m-word chunk in the
training set (train-01-raw) and the first and the second
chunks in the training set totalling about 20 million words
(train-01-02-raw). The CMU-Cambridge Toolkit [3] was
used for this purpose with linear discounting. The
vocabulary sizes were set at 20k, 40k, and 65k. The
pronunciations were mapped from a dictionary of British
English Example Pronunciations [4]. A text-to-speech
system was used to generate pronunciations for lexical
items from the training sets that did not have a
corresponding entry in BEEP.

For the first set of recognition experiments, 100 sentences
(1786 words) were randomly selected from the first test
data set (BNC1).  In addition, a further 100 sentences
(2002 words) were randomly chosen from the Lancaster-
Oslo-Bergen Corpus (LOB1). These sentences were read
by a single male speaker of British English in anechoic
conditions and the recording was digitally acquired at 16
kHz.

2.2 Lexicons and OOV rates

Table 1 summarises the coverage of the pronunciation
lexicons constructed from the training sets. As can be
noted, BNC1 has a higher out-of-vocabulary (OOV) rate
than LOB1, especially at 65k level.

OOV %
Lexicon Size

LOB1 BNC1
train-01-raw-20k 19,998 9.23 9.28
train-01-raw-40k 39,994 7.23 7.48
train-01-raw-65k 64,978 5.85 6.79

Table 1: A summary of pronunciation lexicons

2.3 Perplexity measures

Perplexities were measured for the word models trained
with 10- and 20-million word training sets.  These were
calculated using the CMU toolkit, which by default ignores



To appear in Proc. ICASSP-2000, Istanbul, Turkey

2

OOV words.  From Table 2, we can see that LOB1 has
produced higher perplexities than BNC1. On the other
hand our small test samples seem to have significantly
higher perplexities than the LOB corpus taken as a whole.

10m 20m
LOB1 BNC1 LOB LOB1 BNC1 LOB

20k 434 448 277 377 404 248
40k 512 514 324 441 457 289
65k 562 538 350 480 481 311

Table 2: Perplexities for word models

2.4. Lattice scores

The Abbot recognition system (version 0.76) was used to
obtain our baseline lattice and word accuracy scores. Word
lattices were generated with parameters which increased
the default number of hypotheses to 100.  The maximal
scores for the lattices were calculated by finding the best
path matching the correct transcription using a dynamic
programming search. The overall performance could then
be computed according to the number of incorrect
matches, deletions, and insertions in the best path. Table 3
summarises the word lattice scores for the two test sets
with lexicons of various sizes. It is noticeable that the
overall performance increases with the increase in lexicon
size showing that coverage is an issue.

LOB1 (%) BNC1 (%)
20k 86.4 86.6
40k 88.4 88.6
65k 89.1 88.7

Table 3: Word lattice scores

2.5 Word accuracy rates

Table 4 summarises the performance of Abbot with
language models trained with the 10m-word training data
set (train-01). Three vocabulary sets of respective sizes
20k, 40k, and 65k were used in the training of the language
models.

LOB1 (%) BNC1 (%)
20k 54.7 52.9
40k 56.3 54.6
65k 55.8 55.0
Table 4: Word recognition scores

Table 5 summarises the performance of Abbot with a
language model trained with the 20m word training set
(train-01-02).

LOB1 (%) BNC1 (%)
20k 56.4 54.5
40k 57.4 55.2
65k 57.6 55.3
Table 5: Word recognition scores

Across the various vocabulary sizes, Abbot performed
consistently better with the larger language models. The
better performance on LOB1 is probably related to its
smaller perplexity and smaller OOV rate.

3. PCMA LANGUAGE MODELS
The use of morphological analyses in the construction of
language models is motivated by the benefits that stem
from a reduction in the size of the lexicon.  In addition, a
morph based pronunciation dictionary has fewer minimally
different pronunciation pairs than a wordform dictionary.
However, in our approach, the morphological analysis is
not simply a process whereby words are decomposed into
various parts according to their prefixes and suffixes. In
order that morphological words or word parts may be
reconstructed back into their corresponding orthographic
forms, the decomposition itself has to be conditioned by
phonological constraints. This ensures that a legal
pronunciation may be directly generated from the
decomposed parts and that the decoder used in speech
recognition need not be affected. As an example, in our
approach, the decomposition of abandoned into abandon +
-ed is allowable because the pronunciation may be
constructed from the parts:

ABANDON = ax b ae n d ax n
-ED = d
ABANDONED = ax b ae n d ax n d

On the other hand, the decomposition of academician is
not allowed since its pronunciation cannot be reconstructed
from its parts, i.e., academic and –ian:

ACADEMIC = ae k ax d eh m ih k
-IAN = ia n
ACADEMICIAN = ax k ae d ax m ih sh n

Once the decomposition is successful, the word is
presented as a sequence of its component parts with a
trailing hash sign (#) indicating the presence of a prefix
and a leading hyphen (-) indicating a suffix. As an
example, disregarded is decomposed into three parts: dis#
regard -ed. PCMA is therefore a process with two
sequential operations. Firstly, the word in question is
decomposed into its corresponding morphological parts
according to rules. Secondly, the decomposition is
constrained by a pronunciation lexicon (BEEP, in our
experiment) so that the system only retains those
component parts that allow for the direct derivation of the
pronunciation for the original word.

Based on [5], a total of 115 prefixes and suffixes were built
into the morphological analyser. Table 6 lists 30 most
frequent affixes together with frequency counts extracted
from the LOB corpus for the 52,703 word types as a result
of the morphological analysis.

4353 -s
2527 -ing
1909 co#
1854 -d
1693 -es
1599 -ed
1546 -er
1481 re#
1275 -ly
1036 in#

889 de#
849 -al
786 di#
767 un#
694 -ion
471 be#
432 ex#
418 pro#
405 pre#
396 dis#

369 -ies
350 -en
331 -or
318 -ation
316 en#
278 -ment
268 -ions
264 -ity
263 -able
253 -ness

Table 6: Top 30 affixes

The use of morph units increases the number of tokens
used in language modelling by about 14%.
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4. COMPARISON OF PCMA MODELS
WITH WORD MODELS

Comparisons were made between PCMA and word-based
models in terms of lexicon size, perplexity, model size,
lattice scores, and word recognition rates.

4.1 Lexicon size

Our experiments show that morphological analysis
substantially reduces the lexicon size. Take the 65k-
lexicon as an example. Of the 64,978 items, 32,323
(49.7%) can be analysed by the morphological units listed
in Table 7. Phonological constraints reduce this number
slightly to 21,663 items (33.3%), which results in a
reduction of 29.2% for the lexicon as a whole. Table 7
summarises the sizes and OOV rates of the PCMA
lexicons.

OOV (%)
Lexicon Size

Red.
(%) LOB1 BNC1

20k 13,370 33.2 7.03 7.08
40k 25,158 37.1 6.09 5.90
65k 46,000 29.2 5.02 5.45
Table 7: The size of morph-based lexicons.

As well as reducing the size of the lexicon, PCMA also
reduces the OOV rate since many OOV words are simply
different morphological inflexions of units in the lexicon.
OOV rates for LOB1 and BNC1 are now  comparable
across the different vocabulary sizes.

4.2 Perplexity scores

Perplexity scores for the PCMA models are listed in Table
8. Morph sequence perplexities are about 55% of the word
sequence perplexities. For instance, when trained with
20m-word set, the 65k PCMA model has a perplexity score
of 218 with LOB1 and 207 with BNC1, a reduction of
respectively 54.5% and 56.8% when compared with Table
2.

LOB1 BNC1 LOB
10m 20m 10m 20m 10m 20m

20k 207 187 200 183 144 131
40k 224 201 220 200 158 144
65k 244 218 227 207 169 153

Table 8: Morph perplexities for PCMA models

However to directly compare morph-sequence perplexities
to word-sequence perplexities is it necessary to
compensate for the fact that there about 14% more morph-
unit tokens in the test data than there are word-unit tokens.
Scaling the log-probabilities accordingly shows that the
morph-mapped word perplexities are actually slightly
higher than word-based perplexities.  Any improvements
in word error rate are probably not to do with decreased
perplexity alone.

To confirm that the reductions in perplexity were not
simply due to the reduction in lexicon size, three additional
lexicons were constructed that contain full 20k, 40k, and
65k PCMA items selected according to frequency of use.
With models trained with 20m words, the LOB corpus
yielded 173, 187, and 193 as perplexity scores. When

compared to Table 2, the reductions are respectively
30.2%, 35.3%, and 50.8%, suggesting that the reductions
are not merely due to the reduction of lexicon size.

4.3 Language model size

As a result of lexicon size reduction (c.f. Table 7), the
language model size is accordingly reduced. Table 9 shows
that with language models trained with 10 million words
with different vocabulary sizes, as an example, the
reduction rate is about 25% for bigrams and 10% for
trigrams.

No. of bigrams No. of trigrams
Size Word PCMA Red. Word PCMA Red
20k 1333754 1002651 24.8 4489914 4028923 10.3
40k 1542090 1129039 26.8 4798293 4243928 9.1
65k 1748975 1309768 25.1 5127667 4568349 10.9

Table 9: Reduction of model size

When training data size increases to 20 million words, the
reduction rate accordingly becomes higher. At 40k level,
according to Table 10, the reduction of the number of
bigrams is as high as 29.2% and that of trigrams is 14.6%.

No. of bigrams No. of trigrams
Size Raw Morph Red Raw Morph Red
20k 2049486 1488535 27.4 7831775 6791797 13.3
40k 2409319 1705237 29.2 8470465 7232267 14.6
65k 2708455 1961257 27.6 9017522 7753435 14.0

Table 10: Reduction of model size

4.4. Lattice scores

The results for maximal morph accuracy are listed in Table
11. It is significant that lattices generated through PCMA
lexicons have achieved the maximal performance, i.e.,
100% minus OOV rates. In Table 3, by contrast, the word
error rate is nearly twice the OOV rate.

LOB1 (%) BNC1 (%)
20k 92.2 93.4
40k 94.3 95.2
65k 94.9 95.2

Table 11: Morph lattice scores

Direct comparison between morph-unit lattices and word-
lattices is difficult because the average length of the units
is shorter in the morph-unit lattice.

4.5. Word accuracy rates

Finally, word recognition rates were obtained with the
PCMA models. According to Table 12, models trained
with the 10m-word training set scored nearly 4% better
than conventional word models (shown in Table 4).

LOB1 (%) BNC1 (%)
20k 58.6 55.7
40k 60.2 56.4
65k 59.9 57.6
Table 12: Word recognition scores

With the BNC1 test set, word recognition improvements
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are slightly varied across the different vocabulary sets over
the conventional models: 2.8%, 1.8%, and 2.6%. Table 13
summarises the performance of PCMA models trained
from 20 million words from BNC. When compared to
those listed in Table 5, the enhancement rates across
different vocabulary sets were respectively 2.7%, 3.6%,
and 3.8% for LOB1, and 1.0%, 1.2%, and 2.0% for BNC1.

LOB1 (%) BNC1 (%)
20k 59.1 55.5
40k 61.0 56.4
65k 61.4 57.3
Table 13: Word recognition scores

While the increase of training data size has resulted in
better word accuracy rates for LOB1, the performance
seems to have deteriorated for the other test set, BNC1.
This deterioration is mainly due to the increase in the
number of insertions.

4.6. Closed-vocabulary tests

The recognition tasks described in 4.5 are characterised by
relatively large vocabularies and OOV rates: the materials
were taken from general English corpora.  To compare
these results with more conventional recognition materials,
PCMA modelling was also applied to the test materials of
the WSJCAM0 database [6, 7].  The 1105 test sentences
were divided into two groups: whether they arose from the
5k or the 20k WSJ lexicons.  Table 14 summarises the
recognition results for a 20k word, 65k word, 20k-
equivalent morph-unit and a 65k-equivalent morph-unit
lexicon.

Model Word PCMA
Voc. size 20k 65k 20k 65k
Test size 5k 20k 5k 20k 5k 20k 5k 20k
Results 58.8 61.5 64.9 66.2 60.3 63.2 63.4 65.2
Overall 60.3 65.6 61.9 64.3

Table 14: Results from close-vocabulary tests

At 20k level, PCMA models were marginally better than
the word-based models (61.9% vs 60.3%) whereas at 65k
level the performance of PCMA fell below that of word-
based models. This was probably due to the fact that the
words in the test material were adequately covered by the
larger word lexicon.

5. CONCLUSION
As described in this article, PCMA has shown through
empirical tests a number of benefits:

• Reduced lexicon size – PCMA generates a much smaller
lexicon for the same coverage, a reduction of 30% of the
conventional pronunciation lexicon.

• Enhanced lattices – a larger proportion of correct
readings are found in morph lattices compared to word
lattices. In fact the morph lattices are at near-maximum
performance.

• Reduced perplexities – morph sequence perplexities are
only 50% of equivalent word-sequence perplexities.

• Reduced language model size – PCMA is capable of

reducing word bigrams by 25% and word trigrams by about
10% .

• Increased word accuracy rates – PCMA has reduced the
word error rate in absolute terms by about 2% and in relative
terms by about 5% although this improvement was observed
only in open-vocabulary recognition tasks.

We conclude that PCMA obtains most of its effect through
the increased productivity of a fixed size lexicon.  In tasks
with high OOV rates, such as those derived from the BNC,
the increase in coverage compensates for deficiencies
arising from the use of fewer, smaller units.  There seems
to be no benefit with regards to language model perplexity,
which might be expected since the trigram morph-unit
model operates on a smaller 'window' of the sentence.  The
increase in morph lattice rates could be due to both a
decrease in lexicon size and a decrease in the number of
minimally different pronunciations in the lexicon.

It is possible that some of the deficiencies of the morph-
unit model could be addressed by further work, in
particular by adding phonological constraints on morph-
unit combinations in a recognition post-processor, or by
interpolating word and morph-unit language models.
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