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� Frame-by-frame processing in T-F domain
� Block diagram:

� Processing steps:
1. Transformation of the input signals in the T-F domai n using a Short-time Fourier 

Transformation (STFT)

2. Feature extraction for the vowel detection in each time-frame l.
� Harmonicity (R) – estimated by the modified ACF method [2]
� Positions of the two first formants (f1 f2) – estimated by the LPC analysis
� Signal power (P)

3. Detection (DET) of time-frames with obvious vowels
A hard-decision, based on the possible ranges X of harmonicity, signal power and the 
positions of the first two formants, i.e. only the frames with vowels are kept in the 
output signal of this block. 

4. Detection-directed filtering (DDF)
Only the T-F bins in a specific range Bi around the formants fi are kept for the further 
processing, other bins are discarded.

5. Localization
The GCC-PHAT localization method [2] is applied to the output signal from the DDF 
block.

6. Scene description
The position of the speech source 
= averaging the estimated angle in each frame over a specified time interval
(assuming spatial stationary of the speech source)
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Introduction

� Motivation for mCASA – model-based Computational Auditory Scene Analysis [3]
� To describe the acoustic scene (Fig. 2) in terms of spatial distribution of sources and 

their classification (as e.g. speech, music, noise, etc), using an a priori model of the 
detected signals

� Usable for: Optimally activating and controlling of hearing aid (HA) algorithms 
(e.g. steering of a beamformer, HA program switching, ... )

� Objectives
� Speech localization of a single talker (Binaural HA configuration)
� Based on vowel detection – the characteristic components of human speech
� Extendable system in order to detect other classes (e.g. music, noise…)

Evaluation

System description

� This work introduces a general framework for localization of acoustical sources
� Currently: speech localization based on vowel detection
� Reliable speech localization down to SNR = 0dB, method fails for SNR < -10dB
� Outlook: 

� Dropping the spatial stationarity and better ear assumption
� System extension for other sound classes (e.g. music)

Conclusion
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Fig. 3. Localization performed on the input signal, after the 
detection block (DET) and after the detection-directed 
filtering (DDF) block. SNR = -5dB.

� Test Configuration – Fig. 2
� Binaural configuration of behind-the-ear 

(BTE) hearing aids, simulated using the 
HRTF 

� Variable power of the speech source, 
constant power of the interferers

� SNR measurement evaluates the same 
microphone signal as the detection 
algorithm

� Function demonstration – Fig. 3
� Applying the localization method on the 

input signal, on the signal after the DET 
and after the DDF block

� Results (example at SNR = -5dB):
� Both blocks are beneficial
� Speech source peak: ↑

� Interferers’ peaks: ↓

� Global maximum after the DDF block 
corresponds to the speech source.

� Speech localization 
in omnidirectional noise – Fig. 4
� Detection performance without the side-

effects of directional sources on the 
localization

� Applying the localization method on the 
signal after the DET and after the DDF 
block.

� Results:
� Type of the noise (either in-car noise or 

a cafeteria babble) has a substantial 
influence on the system performance

� DDF improves the localization in the 
SNR range between -11 and +9 dB

� Speech localization in a complex 
auditory scene – Fig. 5
� Combinations of test signals
� Various SNR
� Correct localization = the localization 

error is less than 5 degree
� Results (correctness of the localization):

� SNR > 10 dB: 
Both methods perform well

� SNR ~ 0 dB: 
DDF still improves performance

� SNR < -10 dB: 
Both methods fail

Fig. 4. Standard deviations of localization after the 
detection (DET) block and the detection-directed filtering 
(DDF) block. 

Fig. 5. Correctness of the localization after the detection 
(DET) block and the detection-directed filtering (DDF) block 
as a function of SNR.
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Fig. 1. System block diagram.

X(l) =
[
R(l) f1(l) f2(l)

]
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S{l,r}(l,Ω) = STFT
{
s{l,r}(k)
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Fig. 2. Test scene with all test sources presented.

Sdet{l,r}(l,Ω) =Mdet{l,r}(l) · S{l,r}(l,Ω), where

Mdet{l,r}(l) =

{
1 X(l) ⊂ X

0 otherwise

Sddf{l,r}(l,Ω) =Mddf{l,r}(l,Ω) · Sdet{l,r}(l,Ω), where

Mddf{l,r}(l,Ω) =






1 Ω ⊂
⋃

i

fi ±Bi

0 otherwise


