The Acoustics of Speech Production:
Consonants

The Acoustics of Speech Production: Consonants

Consonants

All three sources are used
- Frication
- Aspiration
- Voicing

Consonants are created by coordinating changes in the sources with changes in the filter (i.e., formant frequencies)

Articulations change resonances of the vocal tract
- Resonances of the vocal tract are called formants
- Moving the tongue, lips and jaw change the shape of the vocal tract
- Changing the shape of the vocal tract changes the formant frequencies

Consonants Vs. Vowels

Consonants
- Rapid changes in articulators
- Produced by making constrictions in the vocal tract
- Coordination of all three sources (frication, aspiration, voicing)

Vowels
- Slow changes in articulators
- Produced by with a relatively open vocal tract
- Only the voicing source is used

Formant Frequencies

The First Formant (F1)
- Affected by the size of the constriction
- Cue for manner
- Unrelated to place

The second and third formants (F2 and F3)
- Affected by place of articulation

Formant Frequencies

/AdA/

Place of Articulation

Place of Articulation

Bilabial
Alveolar
Velar
Hilahal
Place of Articulation

Bilabials (e.g., /b/, /p/, /m/) -- Low Frequencies
- Lower F2
- Lower F3

Alveolars (e.g., /d/, /n/, /s/) -- High Frequencies
- Higher F2
- Higher F3

Velars (e.g., /g/, /k/) -- Middle Frequencies
- Higher F2
- Lower F3

Place of Articulation Vs. Different Vowels

Step 1: Complete closure of the vocal tract
- Blocks flow of air through the oral cavity
- Impedes vocal fold vibration
- Flesh absorbs most of the sound that the vocal folds manage to produce
- During voiced stops, only a voice bar can be produced during the closure

Step 2: Release of the closure
- Air rushes out through opening
- When only partially open, frication energy (i.e., noise due to turbulence) is produced.
- Seen as a burst on a spectrogram

Stops (e.g., /b/, /p/, /d/, /t/, /k/, /g/)

Voice Bar
Stops (e.g., /b/,/p/,/d/,/t/,/k/,/g/)

- Burst

Stop Consonant Voicing

Voiced Consonants
- Voicing starts less than about 30 ms after release
- Voicing can occur during closure

Unvoiced Consonants
- Voicing starts more than about 50 ms after release
- Voicing cannot occur during closure

Stops (e.g., /b/,/p/,/d/,/t/,/k/,/g/)

- Air pressure is released, so vocal folds can vibrate again
- Articulators move into position for next phoneme
- Movement of transitions change resonant frequencies, which are seen as formant transitions

Step 3: Onset of voicing

- Voicing starts less than about 30 ms after release
- Voicing starts more than about 50 ms after release

Stop Consonant Voicing

Voiced Consonants
- Voicing starts less than about 30 ms after release
- Voicing can occur during closure

Unvoiced Consonants
- Voicing starts more than about 50 ms after release
- Voicing cannot occur during closure

Stop Consonant Voicing

- /AdA/
- /AtA/
Stop Consonant Voicing

<table>
<thead>
<tr>
<th>Voiced Consonants</th>
<th>Unvoiced Consonants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voicing starts less than about 30 ms after release</td>
<td>Voicing starts more than about 50 ms after release</td>
</tr>
<tr>
<td>Voicing can occur during closure</td>
<td>Voicing cannot occur during closure</td>
</tr>
</tbody>
</table>

Duration between release (i.e. burst) and start of voicing is called Voice Onset Time (VOT).

Nasals (e.g., /m/, /n/)

Similar to voiced stops, except air also flows through nasal cavity
- Uvula flap controls airflow through nasal cavity
- Airflow allows voicing to continue during closure

Resonances of the oral and nasal cavities interact
- Hard to see on spectrograms

Nasals (e.g., /m/, /n/)

Fricatives (e.g., /s/, /z/, /f/, /v/)

Created by forcing air through a small constriction
- Noise is produced due to turbulence
- Filtering of the vocal tract depends on where the fricative is produced
 - Fricatives produced toward the mouth have a flatter frequency response than those produced further back
 - Fricatives produced toward the mouth have a higher center frequency than those produced further back
Voiced Fricatives (e.g., /z/, /v/)
Vocal folds can vibrate at the same time that fricative energy is produced
- Creates a voice bar during the fricative
- Vocal fold vibration reduces airflow
 - Reduces the amplitude of the fricative energy

Voiced Vs. Voiceless Fricatives
/AfA/ vs. /AvA/

Acoustic tube models of voiced fricatives
/s/

Source of Fricative Energy

Fricatives (e.g., /s/, /z/, /f/, /v/)

/AfA/ vs. /AsA/

Acoustic tube models of fricatives
/z/

Source of Fricative Energy

Source of Voiced Energy

Acoustic tube models of voiced fricatives
/z/

Source of Voiced Energy

Source of Fricative Energy
Acoustics of Fricatives

- Frequency
 - Front of vocal tract - higher frequencies because of shorter tube
 - Back of vocal tract - lower frequencies because of longer tube
- Bandwidth
 - Front of vocal tract - broader bandwidth
 - Back of vocal tract - more formant structure

Acoustics of bursts in stop consonants

- Burst - just a short fricative
- Acoustics of burst can be explained just like fricatives
- /b/-/p/: broad burst
- /d/-/t/: high-frequency burst
- /g/-/k/: mid-frequency burst

Approximants (e.g., /l/,/w/,/r/)

- More open constriction than for fricatives
 - Free flow of air produces no turbulence
 - Voicing continues during consonant
- Similar to vowels
 - Approximants have lower F1 than for vowels
 - Approximants tend to have more formant movement than vowels

Approximants

/AwA/

Summary

Consonants involve rapid changes in the sources and the filter.
Place of articulation affects F2 and F3
Stops, Fricatives, and Approximants differ in the degree of constriction of the vocal cavity
Voiced and Voiceless consonants differ in the timing of articulations and the vibration of the vocal folds