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THE DICE GAME

In most real decisions that we must make, there is no answer that is
guaranteed to be correct. For most situations, it is necessary to choose
among virtues and evils, hoping to minimize the chance of misfortune
and maximize the chance of good.

In this section, we analyze one common, simple form of decision
making. The situation can be described by the following description.
First, there is some information that the decision maker uses to help
reach his decision. This information comes from the observations of
the decision maker. We represent the results of the observations by
the letter O. Second, the only choice open to the decision maker is
to decide which of two acts, A or B, he will choose to do. Finally,
the choice of decision can be correct or incorrect. Thus, we have the
simple chain of events with four possible outcomes shown in Figure B-1.
The prototypical example is that of the following, a dice game.

Correct

Which
can be

Incorrect

Observation

o Leads to

decision

Correct

Incorrect

You are gambling while playing a guessing game. Your partner throws
three dice. Two of the dice are normal, ‘one die is very special in that
three of its sides are marked with the number “3” and the other three
sides with the number “0.” Your job is to guess which side the special
die came up on; you are told only the total scores from all three dice.
(Obviously, if the total is 2, 3, or 4 the special die must be “07; if
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FIGURE B-1

THE DICE GAME
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the total is 13, 14, or 15, the special die must be “3.”) You are told |
that the score is 8. What should you respond?

Your observation 0 is 8.

Alternative A: Decide that it was a 3.
Possible results: 1. It was a 3. You win the bet.
2. It was a 0. You lose your money.

Alternative B: Decide that the 3 did not turn up.
Possible results: 1. It was a 3. You lose your money.
2. It was a 0. You win.

The important thing to notice about this situation is that, on the
average, you cannot help but make mistakes. There is no possible way
of guaranteeing perfect performance.

To analyze the dice game, consider all the possible ways that it can
come out. First, how many possible results are there? Well, the lowest
number that is possible comes if the two regular dice both turn up
“1” and the special die comes up “0”: that gives a total of 2. The highest
number comes if the two regular dice both come up 6 and the special
die comes up 3: that gives a total of 15. Thus, there are 14 possible
outcomes, ranging from 2 through 15.

Now consider the chance that we can get any one of those 14 scores,
given that the special die was a 3 or a 0. To do this, we have to figure
out how many ways the dice can turn up to give any particular score.
Here is how we do that.

Suppose the total were 8: this can happen in different ways, depending
upon whether the special die is 3 or 0.

If the special die is a 3:

The two regular dice must total 5: There are four ways for that
to happen. The two regular dice can come up 1 and 4, 2 and 3, 3
and 2, or 4 and 1.

If the special die is 0:

The two regular dice must total 8: There are five ways for that to
happen. Two regular dice can come up 2 and 6, 3 and 5, 4 and 4,
5 and 3, or 6 and 2.

In fact, for all the possible scores of the dice, we get the number
of possibilities shown in Table B-1.

Now, suppose that we observed a score of 10. How many ways can
that happen? Looking at Table B-1, we see that this can happen in
3 ways if the special die is 0 and 6 ways if the special die is 3: There
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is a total of 9 ways that the 3 dice can combine to give a 10. Thus,
because we know that we got a score of 10, we also know that, on
the average, 8 of the time this will be a result of the special die coming
up a 3 and 3 of the time from the special die coming up 0. So, if we
guess that a score of 10 means that the special die is a 3, we will be
correct 6 out of every 9 trials and incorrect 3 out of every 9 trials, on
the average. If you are a gambler, you would say that a score of 10
means that the odds of the special die being a 3 are 2 to 1 (six to three).

It would seem to be sensible to say the special die is 3 whenever the
total is 10, because the odds favor it. In fact, look at this:

Total | Proportion of Times

Special Die Is 3

7 3= 33%

8 $= 449

9 3= 569
10 += 61%
11 =719
12 4= 809
13 3 =1009,

On the average, the percentage of times that calling the special die
3 will be correct rises steadily as the total score rises, with the chance
being more favorable than not as soon as the total is 9 or greater. A
good decision rule, thus, would appear to be “Say that the special die
is 3 whenever the total score is 9 or greater.” Let us see what this
would cause to happen.

Hits and misses. Suppose we tossed the dice 100 times, and on each
toss had to decide whether the special die was a 3. We use the decision
rule of responding “Yes” every time a total of 9 or more occurs. Now
go ahead to Table B-1. We will answer yes (the die is a 3) for a score
of 9, 10, 11, 12, 13, 14, and 15. Otherwise we will say no. But there
are 36 possible combinations of the regular two dice, and if the special
die is a 3, only 26 of them give totals of 9 or greater. (We can get
scores less than 9—scores of 8, 7, 6, and 5—in 10 ways.) Thus, we
will be correct by saying yes 26 out of every 36 trials on which the
special die really is a 3. We miss 10 out of every 36 trials that the
special die really was 3.

The proportion ‘of times that we get a hit by correctly deciding yes,
the 3 has turned up, is represented as p(yes|3). The vertical bar (1)
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Table B-1
Number of Ways This Can Happen
if the Special Die Is a

Total 0 3
0 0 0
1 0 0
2 1 0
3 2 0
4 3 0
5 4 1
6 5 2
7 6 3
8 5 4
9 4 5
10 3 6
11 2 5
12 1 4
13 0 3
14 0 2
15 0 1
16 0 0
Total Combinations: 36 36

means “conditional” or “given.” Thus the terms read “the proportion of
hits is equal to p(yes|3), which is the proportion of yes, given that a 3
actually was rolled on the special die.” In this example the hit rate or
p(yes|3) = 26 = 72%. Similarly, the miss rate p(noj3), is 19 or 28%.

False alarms. What about when the special die really was a 0?7 We
respond yes anytime the total score is 9, 10, 11, or 12. Thus, out of the
36 combinations of the two regular dice when the special die is a 0,
exactly 10 of them lead to a total score of 9 or more, the other 26 com-
binations lead to a total score of 8 or less. Saying yes for the wrong
event is called a false alarm. In this example, the false-alarm rate is 19:
p(yes|0) = 19 = 28%.

Moving the criterion. We can adjust how often we correctly guess
that the special die turned up “3” by adjusting the critical score at
which we change from an answer of “yes” to “no.” But, as the critical
score varies, so do the hits and the false alarms. The hit- and false-alarm

rates are related; increasing one always increases the other. In fact,
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the exact relationship between the hit and false-alarm rate is very im-
portant in decision theory. Call the critical score on which we base
our decisions the criterion. Whenever the dice total equals or exceeds
the criterion, we say that the special die is most likely to be a “3”;
otherwise we say that it is probably a “0.”

False-Alarm-Rate Hit Rate
Criterion Fraction Percentage Fraction Percentage
1 33 100 38 100
2 38 100 3¢ 100
3 33 97 33 100
4 3 92 13 100
5 13 83 28 100
6 23 72 33 97
7 13 58 33 92
8 1 42 32 83
9 18 28 3¢ 72
10 w5 17 43 58
11 1 8 32 42
12 - 3 13 28
13 o 0 =5 17
14 % 0 % 8
15 5% 0 o5 0

The operating characteristic. It is easier to see the relationship
between false alarms and hits if we plot them together, as shown in
Figure B-2. This relationship is called an operating characteristic.* This
curve shows explicitly how changing the criterion (the numbers beside
the points) changes both the percentage of hits and the percentage
of false alarms.

Another way of seeing how the decision rule must always be related
to the trade off between hits and false alarms is to look again at the
distribution of total scores shown in Table B-1. This time, draw a
diagram of the distributions (Figure B-3). This is the same information
originally presented in the table, but now it is clear why there must
always be errors. The distribution of dice scores when the special die

* Originally, this relationship came from the study of radar receivers attempting
to determine whether the signal seen was a real one or 'simply noise. Hence, the
curve was called a Receiver Operating Characteristic or ROC curve. The term
ROC curve is still widely used in the psychological literature.
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is a 0 (the distribution on the left) overlaps considerably with the distri-
bution of scores when the special die is a 3 (the distribution on the
right). There is nothing that can be done about that overlap: If the
dice total is 8, it could be a result of either outcome of the special
dice. In the figure, a criterion of 11 is drawn in. For this criterion value,
we decide to say that the special die is a 3 if we get a dice total
of 11 or more, so the chance that we are correct is the chance that
we get an observation of 11 or more from the distribution shown on
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the right. The chance of a false alarm is the chance of an observation
of 11 or more from the distribution shown on the left. Thus, simply
by examining how much of each distribution lies to the right of the
criterion, we can see the way the relative hit- and false-alarm rates
vary as we move the criterion back and forth. This, of course, is exactly
what we did in drawing the operating characteristic.

The operating characteristic shows how performance varies as we
vary the decision rule. Now, what happens if we make the task easier?
Suppose we change the dice game so that the special die has a 6 on
three sides and 0 on the other three sides. What then? We leave this
as a problem for the reader. Draw the new distribution of observations
of the dice scores for the special die coming up a 6. (You already
have the distribution for the case when the special die is 0.) Now
draw the operating characteristic. It should include the point that has
a hit rate of 83% and a false-alarm rate of 8% If it does not, you
had better review this section on operating characteristics.

The diagram of the distributions points out something else about the
decision rule: If we simply adopt a strategy of saying “3” whenever
the dice total exceeds the criterion, we are wasting information. There
are times when we have absolutely no doubt about the accuracy of
our response, and there are times when we know that we are simply
guessing: How does the decision rule describe this? The answer is
simple. Whenever we get a low total on the dice, say between 2 and
4, we are certain that the special die was a 0; whenever we get a high
score, say between 13 and 15, we are certain that the special die was
a 3. With a value of 8 or 9 for the total score, we are guessing. Thus,
we can say more than simply yes or no whether the special die is likely to
be a 0 or a 3: We can also assign a statement of how confident we are
in that response. We can easily qualify our answers by adding a state-
ment like “I am very certain,” or “I am pretty certain,” or “I am really
just guessing” to our statement of yes or no. When this is done, we
see that there are really six responses:

Yes, the special die is a 3 and I am
very certain
certain
not certain

No, the special die is a 0 and I am
not certain
certain
very certain

671
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These six responses can be ordered according to the dice score, with
a response of “very certain that it is a 37 always coming from the
highest total and “very certain that it is a 0” coming from the lowest.

If we draw the way responses come from the distributions of dice
totals, we might get something like that shown in Figure B-4.

FIGURE B-4

Special die
was “0”

1
-

“m"% Special die
| was “3”

1 {
0 2 4 6 8 10 12 14 1 Dice
total
Confidence Very' Certain ] Not | corrain Very
response certain certain [y certain certain
Yes-No No, Yes,
response the special N the special
die is “0” Critericn die is “3”

These confidence ratings are extremely useful. Note that we can treat
the six different responses somewhat as if we had six different criteria
for responding. Thus, the operating characteristic can be drawn to reflect
confidence ratings, rather than the criteria illustrated previously.
To do this, simply note that the chance of responding yes with a con-
fidence of certain or greater is given by the chance that the dice total
is 11 or greater. Thus, in the illustration shown in Figure B-4, the trans-
lation between criteria and confidence ratings looks like this:

To Simulate
a Criterion of

13
11
9

7
5
2

Combine These Responses

Yes—very certain

Yes—very certain and certain

Any response of yes

No—Not certain and any response of yes
No—Not certain, certain, and any response of yes
Any response whatsoever
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1
|
|
1
|

THE DICE GAME

Note that in order to plot the operating characteristic we do not really
need to know what the criteria are. All we need to know is what the
hit- and false-alarm rates are for the various responses.

Suppose we did the dice game for 200 times. Furthermore, suppose
that on 100 trials the special die came up 0 and on 100 trials it came
up 3. After the experiment, we sort out the responses according to
whether they resulted from a 3 or 0 on the special die. Suppose that this
is what we found.

Responses Number of Occurrences When Special Die Was

0 3

A. Yes—very certain 0 17
B. Yes——certain 17 41
C. Yes—not certain 11 14
D. No—mnot certain 30 20
E. No——certain 25 8
F. No—very certain 17 0
TOTAL: 100 100

Now, without bothering to figure out what criterion each response repre-
sents, we simply realize that we can treat these responses as if each
came from a criterion, if we lump together all responses of a certain
confidence or greater:

Response (Special Die Was 0) | (Special Die Was 3)
- False-Alarm Rate Hit Rate
A 0 17
Bor A 17 58
C,B,or A 28 72
D,C Byor A 58 92
E,D,C BorA 83 100
F,E,D,C,B,orA 100 100

If we plot the hit- and false-alarm rates, we get the operating charac-
teristic (Figure B-5)—the same curve shown in Figure B-2.

This is exactly how we analyze real data, the only exception being
that in a real experiment the numbers would not come out quite so
cleanly. People are inconsistent in where they place their criteria. These
inconsistencies are relatively small, however.
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The normal
distribution
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We ask a human subject to listen to a very weak signal that is presented
to him periodically over a pair of earphones. We want to find out
whether or not he can hear the signal. The question is actually much
more complex, however, because the subject is always hearing some-
thing: He must decide whether what he has heard resulted from the
signal presented, or whether it was simply a result of the normal fluctua-
tions in hearing that occur. These fluctuations come about for many
reasons. In fact, in many experiments, we add noise to the earphones
in order to see how well the subject can pick out the signal from the
noise.

The situation for the subject is very much like the situation described
for the dice game. He listens during the interval when the signal could
be presented and ends up with some observation, much like our rolling
the dice and ending up with some total score. The question is, did
that observation come from the signal or just from noise. The analogous
question for the dice game, of course, is, “Did that total result from
the special die being a 0 or a 3?” We assume the subject who tries
to detect the signal chooses some criterion: If his observation exceeds
that criterion he says “signal.” Otherwise he says, “no signal.” From
his hit- and false-alarm rates, we try to determine the separation of
the distributions that he must be using to make his decision. Then,
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from our determination of the distributions, we try to decide how the
auditory system must be converting the signals.

Let us now work through some examples. Before we do, however,
we need to introduce a special type of distribution of observations,
the normal distribution.

When we played the dice game, we developed the distribution of
outcomes of the dice (Figure B-3). In general, however, a different
type of distribution is frequently encountered. This distribution is called
the normal distribution, and is an extremely useful one to know about.
It is widely used in many fields of study, including psychology, and
it usually turns out that even if the actual distributions under study
are not normal, the normal is an excellent approximation to the true
one. A drawing of the normal distribution is shown in Figure B-6. Notice

Mean

that it looks very much like the distribution for the dice game, except
it is drawn smoothly, rather than with steps. This is because the total
score from a dice game can only take on an integral value—it must
be a number like 6 or 7, it cannot’l_ie between. The normal distribution,
however, can take on any real number, positive or negative. The normal
distribution shown here is characterized by one number—the mean or
average value. As it is drawn, it has an average value of zero. If it
were to have an average value of, say, 1.5, the distribution would simply
be shifted to the right, so that its peak was at 1.5: This is shown in
Figure B-7.

The values of the normal are shown in Table B-2. Here we see the
height of the curve for different values along the horizontal axis. In
addition, we also show the percentage of the curve that lies to the right
of any criterion. It is this latter figure that we use for computing the
operating characteristics.

What we usually care about is how far apart the mean values of
two distributions are from one another. Suppose we do the experiment

FIGURE B-6
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Table B-2 The Normal Distribution Height and Percentage of the Curve (Area)
to the Right of Any Criterion

Criterion

Crite- Y Per- Crite- Y Per- Crite- Y Per-

rion centage rion centage rion centage
—3.0| .004 99.9 —-1.0 .242 84.1 1.0 .242 15.9
=2.9 .006 99.8 -9 .266 81.6 1.1 .218 13.6
—2.8 .008 99.7 -.8 .290 78.8 1.2 .194 11.5
—2.7 .010 99.7 = 312 75.8 1.3 A7 9.7
—2.6| .014 99.5 —.6 .333 72.6 1.4 .150 8.1
-2.5 .018 99.4 —.5 .352 69.2 1.5 .130 6.7
—2.41 .022 99.2 —.4 .368 65.5 1.6 A1 5.5
—2.3| .028 98.9 -3 .381 61.8 1.7 .094 4.5
—2.2 .035 98.6 =2 .391 57.9 1.8 .079 3.6
-2.1 .044 98.2 —.1 .397 54.0 1.9 .066 2.9
—2.01 .054 97.7 0 .399 50.0 2.0 .054 2.3
—-1.9 .066 97.1 .1 .397 46.0 2.1 .044 1.8
—1.8 .079 96.4 2 .391 42.1 2.2 .035 1.4
—1.7 .094 95.5 3 .381 38.2 2.3 .028 1.1
—-1.6 11 94.5 A .368 34.5 2.4 .022 .8
—-1.5 130 93.3 D .352 30.1 2.5 .018 .6
—1.4| .150 91.9 .6 .333 27 .4 2.6 .014 .5
—1.3 A7 90.3 7 312 24.2 2.7 .010 .4
—-1.2 .194 88.5 .8 .290 21.2 2.8 .008 3
-1.1 .218 86.4 .9 .266 18.4 2.9 .006 2

Mean or average is

FIGURE B-7 L S
2 E :
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FIGURE B-8

Criterion

S~

A is positive
—A ~B B is negative
d d=A—-B
Criterion
A is positive
A B is positive
d=A—
T B
d

Criterion
A A is negative
B is negative
d=A-B

B

L—d’——>

we mentioned in which we ask the subject to try and detect a signal
that we present to him. We want to find out how far the distribution
of observations that results from noise is from the distribution which
results from the signal. We think that the situation is characterized
by Figure B-8.

We want to discover both exactly where the signal distribution is
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located relative to the noise distribution and also where the criterion
is. To start, call the mean value of the noise distribution 0. There is
good reason for doing this, in the absence of signal the average observa-
tion ought to be around zero. Moreover, since we only care about the
relative separation of the two distributions, it doesn’t really matter what
number we call the mean value of the noise (our measurement will
be on an interval scale; see Appendix A). We call the distance from
the mean of the noise distribution to the criterion A, the distance from
the mean of the signal distribution to the criterion B, and the distance
from the mean of the noise distribution to the mean of the signal distri-
bution d’. The symbol d’ is used for historical reasons: That is what it
has been called in the psychological literature. Both A and B are dis-
tances from the mean value of distribution. If the criterion is to the right
of the mean, A and B are postive. If the criterion is exactly at the mean,
then the distance value is 0. If the criterion is to the left of the mean, the
distance is negative. Thus d’ = A — B.

Suppose our subject gives us a false-alarm rate of 14% and a hit rate of
95%. We can immediately determine A: If we look up 14% in Table B-2,
we see that the criterion must be located a distance of 1.1 units to the
right of the noise distribution. Thus, A = 1.1. Similarly, we see that a hit
rate of 95% requires that the criterion be 1.6 units to the left of the mean
of the signal distribution (the criterion value is at —1.6). Thus, B =
—1.6. Now we know that d’ = 2.7. And that is all there is to it.

At this point, we can probably learn most about the use of operating
characteristics and about the normal distributon by working a few
problems.

We are installing a sprinkler system as part of a fire-alarm system
for a building. Now we wish to install the temperature control that
will turn on all the sprinklers whenever a fire occurs. The control is
located near the ceiling of a large store room. The roof is made of
tin, and there are no windows in the room. Questions: To what tempera-
ture should we set the control? If the temperature is set too low, (sav
130°), then on very hot days, when the outside temperature goes as
high as 110°, it is quite likely that the hot air will rise to the ceiling
of the storeroom and be heated even more by the sun warming up
the tin roof. Thus, it would not take long for the air temperature to
reach 130° and set off the system: a false alarm.

If, however, the temperature is set higher, say 180°, it is quite likely
that a fire could develop and destroy a good deal of the items in the
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storeroom before the flames got high enough to heat the air at the
ceiling to a temperature of 180°. Thus, we would fail to report many
fires, at least while they were still small enough that the sprinkler system
could put them out. This would be a miss. Where do we set the
temperature?

To solve this problem, we need information about hits and false
alarms. We need to know the probabilities with which these occur.
Ideally, we would set up a test situation and watch what happens over,
say, a 3-month period, carefully counting the occurrences of hits (correct
triggering of the system to a fire), misses (failure to respond within,
say, 5 min of a fire), false alarms ( triggering of the system in the absence
of a fire), and correct rejections (no response from the system in normal
conditions ). Then we could plot an operating characteristic.

The way we plot the operating characteristics is to vary the temperature
setting of the control, collecting information about the hit- and false-
alarm rate at each temperature setting. Thus, if we set the control at
140°, we might observe that the actual room temperature reaches that
value on one day out of every five—giving a false-alarm figure of
20%—and we might also note that 88% of the fires that we set caused
the room temperature to reach that value within the 5 min we re-
quire—a hit rate of 88% This, then, is the first point on our curve:
p(alarm|fire) = 88%; p(alarm|no fire) = 20%.

This one point is actually sufficient, if we believe that everything
is normally distributed. We can now compute the value of d’ and then
compute what the rest of the curve should look like.

If we go back to the table of the normal distribution, Table B-2, we
see that if we have a false alarm rate of 20%, the criterion must be to the
right of the highest point on the distribution, at about .8: That is, the
value of A is 0.8. A hit rate of 88% means that the criterion must be
located to the left of the highest point on the distribution, at a point
around —1.2. Thus, B = —1.2. Now d is simply the distance that the two
distributions are apart, and that is given by 0.8 4 1.2 = 2.0. Our fire-
alarm system has a d’ of 2.0. The entire curve, therefore, looks like that
shown in Figure B-9.

Now, to complete our information about the setting of the temperature
limit we can simplify our procedure: All we do is find out what the
false-alarm rate would be at different temperatures. To get this informa-
tion, we can install an automatic temperature recorder in the building
for a few months. Then, we look at the distribution of temperatures
reached throughout that period. We might find that at a temperature
of 150°, there was a false alarm only 10% of the time, at a temperature

679



680

FIGURE B-9

Memory
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of 160° only 1% of the time, and at a temperature of 130°, 60% of
the time. These values then determine points on the operating character-
istic, as shown.

At this point, it is obvious that we can never survive with a d’ as low as
2.0. If we set the false-alarm value at a level acceptable to the fire depart-
ment, say 1%—a temperature setting of 160°—then our insurance com-
pany will complain that we will only detect a fire with a chance of 2.
If we try to detect the fire with a chance as high as %%, we will have a
false alarm rate of close to 40%—clearly unacceptable to the fire depart-
ment. It is quite clear that we can never solve the problem by trying to
adjust the temperature setting of the sprinklers and alarms. We have to
raise the d’ value.

Supose that both the fire department and the insurance company agree
that an acceptable hit and false alarm rate would be 99% and 1% respec-
tively. What value of d’ would we have to have?

From experiments in memory, we know that if a list of 30 names is
presented to you once (for about 2 sec per name), an hour later the
retention of that list will be very low. In fact, for any individual name,
d =08

Suppose you were a member of a receiving line at a formal party
and in a 60-sec time period, 30 people had been introduced to you.
An hour later you try to recall their names. Assuming that you adjust
your false-alarm rate to be 8%, what percentage of the names do you
remember?
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Consider a version of the three-dice game in which the special die has
O on three sides and S on the other three sides. Using the normal dis-
tribution as a good approximation of the dice distribution, what is the
relationship between d’ and the value of S?

Assume that there is a fixed criterion at 11. This means there will be a
false-alarm rate of 8%. Thus, if S is 3, we see from our dice-game table
that the hit rate is 4§ or 42%. Going to the normal distribution tables,
A=14, B=02 so d =A— B =12 The relationship between d’,
hit rate, and false-alarm rate (assuming a fixed criterion of 11) is shown
in Table B-3. The relationship between d’ and S is plotted in Figure B-10.
Now, you should try to complete both the table and the figure.

Table B-3
Value of S | False-Alarm Hit A B A—B=4d
Rate Rate
0 8% 8% 1.4 1.4 0
1 8% — 1.4 — —
2 8% — 1.4 — —
3 8% 429, 1.4 0.2 1.2
4 8% — 1.4 — —
5 8% — 1.4 — —
6 8% 83% 1.4 —1.0 2.4
7 8% e 1.4 i —_
8 8% - 1.4 — -
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APPENDIX B OPERATING CHARACTERISTICS

SUGGESTED
READINGS

The decision theory discussed here grew out of the engineering litera-
ture and it has mostly been applied to the study of sensory processes:
to psychophysics. Because it was first applied to the analysis of detecting
signals in noise, it usually goes under the name of Signal Detection
Theory, or sometimes simply SDT. Thus, to find this topic in book
indices, one must usually look for “signal detection theory” or sometimes
for d'.

The best overall introduction to the many uses of the decision theory
discussed here is the book by David Green and John Swets: Signal Detec-
tion Theory and Psychophysics (1966). This book does get very technical,
but much of the material in the early chapters can be followed without
too much difficulty even by those whose mathematics is weak. Some of
the latter chapters review the various uses of the decision theory to other
areas of psychology.

The chapter by Egan and Clarke (1966) in Sidowski’s book on experi-
mental methods offers another very good introduction to the technique.
The book of collected readings edited by Swets (1964) gives a collection
of uses, but this is very technical material.

This decision theory has been widely used in other areas. A good
(and easy to follow) description of its application to the study of the
retrieval of material from libraries by various automatic systems is given
in the Science article by Swets (1963). But perhaps the most widely
encountered use of this method of analysis has been in the study of
memory. Two typical studies, both introducing the technique and il-
lustrating what can be done with it are the ones by Norman and
Wickelgren (1965) and Wickelgren and Norman (1966). A much
simpler introduction to these studies is the short description given in
Norman’s Memory and Attention (1969a, pp. 148-161). ('This is the same

“theory discussed in Chapter 9 of this book.) Many of the advanced

theories presented in Norman’s Models of Human Memory (1970) rely
heavily on detection theory analysis.





