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Highest audible frequency correlates
with head size in mammals

Highest Audible Frequency at 60 dB SPL (in kHz)
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Sivian & White (1933) JASA
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Two ways to define a threshold

e minimum audible field (MAF)

—in terms of the intensity of the sound
field in which the observer's head is
placed

e minimum audible pressure (MAP)

—in terms of the pressure amplitude at

the observer's ear drum
e MAF includes effect of head, pinna &
ear canal




MAP vs. MAF
Accounting for the difference

35 -
30 — —MAP|
25 AW MAF|
20 | N
T 15 N —
z i -
2 10 N\ ~ z S _//
i —
o 5 \ /
0 \ /
5 ~~_"
-10 T |
100 1000 10000
frequency (Hz)

Frequency responses for:

ear-canal entrance

near the ear drum

free-field pressure

Total Effect:
near the ear drum
free-field pressure

ear-canal entrance

20 ~
N\

10 o\

gain(dB)

\-
100 1000 19000

-10 -
frequency (Hz)

— head+pinna
1 —ear canal
0 ,ﬁ —total

10

Determine a threshold for a 2-kHz
sinusoid using a loudspeaker
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Now measure the sound level

at ear canal (MAP):
15 dB SPL

at head position without
head (MAF): 0 dB SPL




Accounting for the ‘bowl’

Combine head+pinna+canal+middle ear
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Detection of sinusoids in
cochlea

Threshold

A
Y

e How big a sinusoid do we have to put into our
system for it to be detectable above some
threshold?

e Main assumption: once cochlear pressure reaches
a particular value, the basilar membrane moves
sufficiently to make the nerves fire.

14

Detection of sinusoids in

cochlea
Threshold
R A /
X = Thkeeep=oe--
4 \

e A mid frequency sinusoid can be
quite small because the outer and
middle ears amplify the sound
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Detection of sinusoids in

cochlea
Threshold
R % /
X = Tkt
4 \

e A low frequency (or high
frequency) sinusoid needs to be
larger because the outer and
middle ears do not amplify those
frequencies so much
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Detection of sinusoids in

Use MAP, and ignore contribution of head and

ear canal
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Equal loudness contours
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Direct scaling procedures:
Magnitude Estimation

e Here’'s a standard sound whose
loudness is ‘100’

e Here’'s another sound
— If it sounds twice as loud, call it 200
— If it sounds half as loud call it 50

e In short - assign numbers
according to a ratio scale
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Alternatives to magnitude
estimation

e Magnitude production

- Here’s a sound whose loudness we’ll call
100

— Adjust the sound until its loudness is
400

e Cross-modality matching

— Adjust this light until it as bright as the
sound is loud
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Magnitude estimates are well
fit by power functions
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... SO also on log-dB scales

1 sone = 40 phon
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What's the slope
in dB terms?

0.01 4
dB SPL (for 1 kHz tones) or phons

Reminiscent of ?
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Strict power law not quite right
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How does loudness for noises
depend on bandwidth?

Vary bandwidth of noise keeping total
rms level constant
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Discrimination of changes in
intensity

e Typically done as adaptive forced-
choice task

e Two steady-state tones or noises,
differing only in intensity

e Which tone is louder?

e People can, in ideal circumstances,

distinguish sounds different by = 1-2
dB.

Changes in intensity

20-dB attenuation

10-dB attenuation
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Across level, the jnd is, roughly speaking,

33 a constant proportion, not a constant amount. 34
. 7 .
Weber's Law The near ml_sséltof Weber’s Law in
e Let Ap be the minimal detectable change Intensity jnds for pure tones
in pressure, or just noticeable difference e T
(jnd) - i -
5 < 1000 Hz —.8
e Weber’s Law: the jnd is a constant F s
proportion of the stimulus value e
Ap = k x P where k is a constant £ sk -
Ap/P = k 125~
e Like money! 5
e Also a constant in terms of dB &
Figure 10.8 The value of Al in decibels (the difference in decibels between the more
and less intense tones) required for threshold discrimination is shown as a function of
overall tonal intensity in dB SL. Data for five frequencies are shown.
Based on data of Jesteadt, Weir, and Green, 1977, with permission
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From Yost & Nielsen (1985)
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from Yost (2007)

Intensity jnds

e For pure tones, the jnd for intensity
decreases with increasing intensity
(the near miss to Weber's Law)

e For wide-band noises, Weber’s Law
(pretty much) holds

e Probably to do with spread of
excitation —
- See Plack The Sense of Hearing Ch 6.3

Excitation -

Excitation Pattern models

A

place on BM -

Excitation -

place on BM -

Small change in frequency Small change in amplitude

e Sounds are perceivably different if

excitation pattern is different by 1dB
at some point (Zwicker)

Excitation patterns for a tone
and broadband noise

Firing rate (spikes/s)
Firing rate (spikes/s)

—

Position along basilar membrane

bands of noise do not ‘spread’ along the

BM as intensity increases




