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Preface 
 
This booklet has been written to accompany courses in the acoustics of speech and hearing at 
University College London. Its aim is to introduce the basic details of units, algebraic 
manipulation, number manipulation, mechanics and experimental design necessary for a good 
understanding of physical acoustics and laboratory work 
 
We have produced this booklet so that you can find a single, accessible source for this 
information. You should find all inside comprehensible and you should make an attempt to 
understand it. Your tutor will help you with any difficulties you may have. 
 
Paragraphs in grey boxes are for information only - you are not expected to memorise the 
detail given. 
 
The author is pleased to accept any suggestions for improvements or additions to the booklet. 
We hope you find it useful. 
 
Third edition  
 
I have added a glossary of terms commonly found in acoustics 
 
Fourth edition 
 
I have revised the exercises and made minor modifications to the text.  Answers to the 
exercises can be found on the web site:  http://www.phon.ucl.ac.uk/courses/spsci/b214/. 
 
Fifth edition 
 
I have added two short sections on how to use a laboratory voltmeter and sinewave generator. 
 
Mark Huckvale 
September 2005 
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1. Measurement 
 
This chapter introduces some basic ideas about measurement - the units in which 
measurements are made, how units can be combined and manipulated, how physical 
relationships are mirrored in the relationships between units, how measurements can be 
written as numbers. 
 

1.1 Basic Units 
 
We use the S.I. system of units (http://www.bipm.org/en/si/).  In this system there are seven 
base units from which all others are derived.  The enormous advance over previous systems is 
the use of a common notation, common multiplier prefixes, and the elimination of conversion 
factors within the system.  We'll only be concerned with the three basic units: 

Mass 
 
Mass is measured in units of kilograms, written kg. 

Length 
 
Length is measured in metres, written m. 

Time 
 
Time is measured in seconds, written s. 
 

1.2 Multiplying Prefixes 
 
These indicate decimal multiples of units: 
 

1,000,000,000,000×  1012  tera-  T 
1,000,000,000×  109  giga-  G 
1,000,000×   106  mega-  M 
1,000×    103  kilo-  k 
100×    102  hecto-  h 
10×    101  deka-  da 
0.1×    10-1  deci-  d 
0.01×    10-2  centi-  c 
0.001×    10-3  milli-  m 
0.000001×   10-6  micro-  μ 
0.000000001×   10-9  nano-  n 
0.000000000001×  10-12  pico-  p 
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Hence: 1km is one thousand metres. 1ms is one thousandth of a second. 1Mg is one million 
grams = one thousand kilograms.  Unit codes are not abbreviations and should not be 
followed by a period, that is write "10ms" not "10ms.". 
 

1.3 Derived Units 
 

Repeated Events 
 
If we are timing an event that occurs repetitively, one useful measurement is the interval 
between events - this is called the period. The period between events is clearly a 
measurement of time and is measured in seconds. 
 
However a different way of measuring events that repeat is to record how many events occur 
within some period of time - this is called the frequency. In acoustics, where each repetition 
commonly takes much less than a second, we measure frequency in terms of the number of 
events that occur in one second. Thus the units of frequency are some number per second, 
written 1/s or s-1. In fact this unit is used so commonly that we give it a special name: hertz 
written Hz. 
 
We can express the relationship between period and frequency as: 
 

Frequency (Hz) = 1 / Period (s) 
 
That is the frequency of some event is equal to the reciprocal of the period between events 
(the shorter the period of an event, the more often it reoccurs). Notice that this expression 
serves two functions: it allows us to calculate a frequency give the period, and it also defines 
frequency and the units used for frequency.  

Velocity and Acceleration 
 
When we want to measure how fast an object is moving then we have to measure two things: 
a distance and a time. Clearly a faster object will cover a fixed distance in a shorter time than 
a slower object, or will travel a further distance in the same amount of time. The distance 
travelled per unit time is called the velocity, and is measured in metres per second, written 
m/s or ms-1. 
 
The definition of velocity is thus: 
 

Velocity (ms-1) = Distance (m) / Time Taken (s) 
 
In air at 0C, sound travels at 332ms-1. Thus for every 3 second interval after a lightning flash 
the sound of thunder travels approximately 1 kilometre. 
 
The conversion factor from these units to ones you see on roads is: 
 

1 mile per hour = 0.47 ms-1 

1 ms-1 = 2.13 miles per hour 
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When the velocity of an object is changing it is said to be accelerating. If we want to measure 
the rate at which the object's velocity is changing, we shall need to make two measurements 
of its velocity spaced by some period of time. If the object had velocity v1, at time t1, and 
velocity v2 at time t2, then the change in velocity is just (v2 – v1), and the interval between 
measurements is just (t2 - t1). Thus the acceleration is the ratio of the change in velocity to the 
interval between measurements: (v2 - v1) / (t2 - t1) and is measured in metres per second 
per second or ms-2. 
 
The definition of acceleration is: 
 

Acceleration (ms-2) = Change in velocity (ms-1) / Time interval (s) 
 
If a car accelerates from 0 to 60mph in 11.5 seconds, what is its acceleration (in standard 
units) ? 
 

Convert units:  60 mph = 60 × 0.47 ms-1 = 28.2ms-1 

Change in velocity: (28.2 - 0) = 28.2ms-1 

Time interval:  (11.5 - 0) = 11.5s 
Acceleration:  28.2 / 11.5 = 2.45 ms-2 

 
When an object falls to the ground it is experiencing a force caused by gravity. The 
acceleration towards the ground caused by gravity is independent of the mass of the object 
(since both the gravitational force pulling it down and the object's resistance to being pulled 
down are both proportional to the mass of the object) and is equal to 9.81ms-2 (called, 
confusingly, g). Thus the car above has an acceleration of 2.45/9.81 times that due to gravity, 
i.e. about 1/4g. 
 

Area, Volume, Density 
 
To measure the area covered by some object we need to make two measurements of length. If 
the object is rectangular, we can simply measure its length and width. If it is some other shape 
then we need to count how many times some basic rectangular shape fits into the area and 
multiply by the area of the basic shape, see Fig 1. The unit of area is the square metre or m2 

 

 
 
Figure 1. Measuring the area of regular and irregular shapes. 
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Likewise with volume: if the object is rectangular we need only to make three measurements: 
length, width and height. Otherwise we need to count how many basic shapes would occupy 
the same volume and multiply by the volume of each basic shape. The unit of volume is the 
cubic metre or m3. 
 
The observation that objects made of different materials can have different masses despite 
being of equal volume (e.g. a milk bottle full of air or full of milk!) leads to the concept of 
density. To measure the density of a material we need to make two measurements: a 
measurement of mass and a measurement of volume. Mass, as we have seen is measured in 
kg; volume in m3, so density is measured in kg/m3 or kgm-3. 
 
Thus the definition of density is 
 

Density (kgm-3) = Mass (kg) / Volume (m3) 
 
The density of water is 1000kgm-3 (about 1 ton per cubic metre) and the density of air is about 
1kgm-3. 
 

1.4 Algebraic Manipulation 
 
The formulae used in the previous section perform two functions: they act as definitions for 
the derived units (e.g. the definition of density) and they may also be used to calculate a 
derived unit of measurement from a number of more basic units. 
 
The ability to manipulate simple formulae is very useful, for it allows one to answer questions 
phrased differently from the definition: such as 'how much volume does 1kg of water 
occupy?' or 'what is the period of vibration of 50Hz mains electricity?'. 
 
Lets look at some basic manipulation of such formulae. We'll start with the definition of 
frequency: 
 

Frequency (Hz) = 1 / Period (s)  
 
or, using the convention of small letter f for frequency and capital T for period: 
 

f = 1 / T 
 
The golden rule for manipulating such formulae is that you can do anything provided that you 
do it to both sides. So to re-arrange this formula so that is says 'T=...', then we need only take 
the reciprocal of both sides: 
 

l / f = 1 / ( l / T ) = T  
 
that is 

T = l / f 
or 

Period (s) = 1 / Frequency (Hz) 
 



UCL/P&L/ASH/INTROACOUSTICS/9 

There have been a number of ways in which this sort of manipulation has been taught in 
schools, the thing to remember is that valuable as these patterns of manipulation are - they are 
all versions of the golden rule above: 
 
For example, 'when you take a symbol from one side to the other, change its sign' 
 
i.e. 

A = B + C 
  => A - C = B + C - C 
   => A - C = B 
 
means: subtract the symbol (C) from both sides. 
 
Or 'a divisor on one side becomes a multiplicand on the other' 
 
i.e. 

A = B / C 
  => A × C = ( B / C ) × C 
   => A × C = B 
 
means: multiply both sides by the symbol (C).  
 

1.5 Numbers 
 

Accuracy 
 
The use of electronic calculators in the laboratory brings up the issue of how accurately one 
should specify a numeric value. Calculators usually represent numbers with 8 digits since they 
have no way of knowing how accurately the numbers in the calculation are specified. When 
you tap in '1.4', the calculator doesn't know whether you mean 'somewhere between 1.3 and 
1.5' or 'exactly 1.4' (i.e. 1.400000000 ... ). 
 
When you are measuring things in the laboratory, it is unlikely that you will be able to 
measure any more accurately than one part in a thousand, that is with an accuracy greater than 
0.1%. Thus any calculation you do in the laboratory should reflect this: if you measure 15 
swings of a pendulum at 18.2 seconds then its period is 1.21 seconds, and its frequency is 
0.824 swings per second. Note that your calculator might say a period of 1.213333 and a 
frequency of 0.8241758 (why not check?), but these numbers are too precise. To measure the 
period to an accuracy of 7 digits, such as above, we would have to measure the time taken to 
within 0.00001% (1 part in 10million), that is we would have to measure our 15 swings to 
within a microsecond. Such a thing might be possible with suitable apparatus, but not with a 
stopwatch! 
 
There is a simple rule of thumb that we can follow. An accuracy of about 0.1% means that we 
can quote numbers with three digits in them fairly reliably. The formal name for this is three 
significant figures. The word 'significant' is used because leading zeros in numbers smaller 
than 1 are not counted. Thus all of the following have an accuracy of three significant figures: 
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1.23, 0.340, 0.00000000631, 143×106, 7.89×10-3 

 
while these numbers have a greater accuracy: 
 

1.234, 1.340, 0.99999999631, 143000000 
 
To convert numbers of greater accuracy to three significant figures we look at the fourth 
significant digit in the number (skipping leading zeros). If that digit is 0,1,2,3 or 4, we simply 
truncate the number after the third digit. If the digit is 5,6,7,8 or 9 we add one to the third digit 
(and carry 1 if it becomes 10, etc) and then truncate after the third digit. Hence: 
 

1.233  becomes 1.23 
1.235  becomes 1.24 
1.237  becomes 1.24 
1.299  becomes 1.30 
0.9995  becomes 1.00 

 

Scientific Notation 
 
Another problem that tends to be raised rather than solved by electronic calculators is the use 
of scientific notation for numbers. When numbers grow to more than the eight figures that 
calculators can display (because the calculation has grown rather large or rather small), the 
calculator switches to a display format in which the number is divided into two parts: the first 
(called the mantissa) is a number between 1 and 10, the second part (called the exponent) is 
the numbers of powers of ten that the mantissa needs to be multiplied by to get the number 
represented. This is called scientific notation and familiarity with it will help you with 
formulae that contain very large and very small numbers. 
 
Thus if you divide 1 by 88888888 on your calculator, it will probably display 1.125-08 (i.e. 
1.125x10-8), where 1.125 is the mantissa and -8 is the exponent. 
 
Some more examples: 
 

1234  is 1.234×103 

20.0  is 2.0×101 

0.3  is 3.0×10-1 

0.025  is 2.5×10-2 

1000000000 is 1.0×109 

0.00000001 is 1.0×10-8 

 
How do we perform arithmetic on numbers in scientific notation? For addition (or 
subtraction), it is first necessary to convert both numbers to the same exponent - the same 
numbers of powers of ten - then add (or subtract) the mantissas. Thus: 
 

2.0×103 + 1.2×102 

  = 2.0×103 + 0.12×103 

   = 2.12×103 

 
i.e. 2000 + 120 = 2120 
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1.5×103 - 6.5×102 

  =15.0×102 - 6.5×102 

   = 8.5×102 

 
i.e. 1500 - 650 = 850 
 
For multiplication, the mantissas are individually multiplied and the exponents added.  For 
division, the mantissas are individually divided and the exponents subtracted. Thus: 
 

2.0×103 × 1.2×102 

  = (2.0 × 1.2) × 10(3 + 2) 
   = 2.4×105 

 
i.e. 2000 x 120 = 240000 
 
 1.5×103 / 2.5×102 

  = (1.5 / 2.5) ×10(3 - 2) 
   = 0.6×101 
    = 6 
 
i.e. 1500 / 250 = 6 
 
You may find this summary useful: 
 
 10a × 10b = 10a+b 
 10a / 10b = 10a-b 
 1 / 10a = 10-a 

Large and small quantities 
 
A common problem when drawing up a table of figures or a graph, is that the numbers may be 
very large or very small when expressed in the standard units. Thus we might have a table of 
periods of vibration of an acoustic resonator: 
 

Length (m)  Period (s) 
0.25   0.0062 
0.30   0.0086 
0.35   0.011 
0.40   0.023 

 
(the numbers used are for demonstration only) We can achieve a much neater form of table by 
heading each column with an appropriately scaled unit: 
 

Length (mm)  Period (ms) 
250   6.2 
300   8.6 
350   11 
400   23 
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Alternatively we could have written 'Length (10-3m)', etc. What we are doing here is to take a 
common exponent out of all the numbers to get a sensible range of numbers in the table or on 
the axis of a graph. It is good practice to use the standard multipliers shown in section 1.1, or 
to try to keep to the third powers: .., 106, 103, 1,10-3, 10-6,.. 
 

1.6 Exercises 
 
Use these exercises to test your understanding of the chapter.  
 
1. Fill in the blanks: 
 

a) The frequency of a periodic event is measured in __________. 
 
b) An event that repeats 1000 times per second has a frequency of __________. 
 
c) The density of air is about __________. 
 
d) An event that repeats 10,000 times per second has a period of __________. 
 
e) 5cm is __________ m. 

 
2. Express the following in scientific notation to three significant figures: 
 

a) 61743     6.17 × 104   
 

b) 20000         
 

c) 0.02         
 

d) 1/500         
 

e) 1/0.05         
 

f) 2556 × 10-4        
 

g) 0.0564 × 105        
 
3. Simplify the following: 
 

a) 104 ×105        
 

b) 104 × 10-3        
 

c) 10-6 × 103 × 10       
 

d) 101 ÷ 10-3        
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2. Experiments 
 
UCL’s courses in speech and hearing invariably contain a laboratory component.  Laboratory 
work adds to and backs up lecture material, it provides 'hands-on' experience with acoustics 
equipment and phenomena, and it encourages a discipline of experimental study. In this 
chapter we look at two aspects of laboratory work for which students need to be prepared: the 
drawing and analysis of graphs, and logarithmic scales. 
 

2.1 Graphs 
 
We shall be concerned exclusively with X-Y graphs, that is graphs that show how one 
measured parameter varies with the specification of one controlled parameter. Thus in the 
measurement of the period of a pendulum, we set the length of the pendulum and measure the 
time taken for it to complete a swing. 
 
The parameter that we set (the length of the pendulum) is called the independent variable - 
it's the one that can have values independent of anything else. By convention we plot this 
along the horizontal axis of the graph: the X-axis. 
 
The parameter that we measure (the period of the pendulum swing) is called the dependent 
variable -it's the one that depends on the setting of the independent variable. By convention 
we plot this along the vertical axis of the graph: the Y-axis. 
 

 
Figure 2. Prototype X-Y graph. 
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Graph drawing hints 
 

1. Each graph should have a title so that it can stand alone. 
2. Each axis should be labelled with the measurement and the units of measurement. 
3. Choose values of the independent variable (where possible) so that points are spread 

evenly along the line of the graph. This ensures that you have more points (per 
X-axis unit) where the graph is changing rapidly, see Fig 2. 

4. Mark points on the graph with small crosses. When drawing in a connecting line, draw 
a smooth continuous line that approximates the position of the points. Use a ruler to 
draw a straight line fit in circumstances where this is appropriate. 

5. When there is more than one line on a graph, draw them in different colours. 
Remember to provide a key. 

6. Preferably use the grid lines on graph paper to represent 1, 2 or 5 basic units, and 
never to represent 3, 6, 7 or  9 units. 

Equation of a straight line graph 
 
Many X-Y graphs produce what looks like a simple linear relationship between the 
independent and the dependent variable. This means that the value of the dependent variable 
increases by some constant when the value of the independent variable is increased by a 
constant - regardless of the value of the independent variable. This is commonly called a 
straight-line graph. 
 
We can express a linear relationship between the dependent and the independent variable with 
the following equation: 
 

Dependent Variable = Slope × Independent Variable + Constant 
 
Or, using conventional symbols: 
 
 y = m × x + c 
 
Here, y is the dependent variable, x is the independent variable, m is the slope or constant of 
proportionality, and c is a constant known as the intercept (for it represents the value of y 
where the line intercepts the y-axis). 
 
To measure the slope and the intercept off a graph, we proceed as follows (refer to Figure 3):  
 

1. Draw in a straight line approximating the measured points. 
2. Find a convenient range of x on the graph - say about 2/3 of the length of the x-axis. 

Call this range Dx.  It will have the measurement units as the x-axis 
3. For this range of x values, find the corresponding range of y values using the straight 

line. Call this range Dy.  It will have the same measurement units as the y-axis. 
4. Calculate the slope of the graph from:  slope = Change in y / Change in x 

m = Dy / Dx 
5. Measure the intercept by noting where the straight line crosses the y-axis (i.e. the 

value of the line when x is 0). This can be positive or negative depending on whether 
the line crosses the y-axis above or below the x-axis.  

c = intercept 
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Figure 3. Equation of a straight-line graph. 
 
 
When the slope and intercept have been calculated, new values of y can be predicted from 
values of x and vice-versa, using:  
 

y = m × x + c  
or 

x = (y - c) / m 
 

2.2 Logarithmic Scales 
 
There are occasions where the independent and the dependent variable have a different kind 
of relationship with one another - one that is not simply linear. 
 
Consider the circumstances when a constant added to an x-value changes the y-value by a 
constant multiple. For example: adding 2 to x might make y increase by 50% of its current 
value. 
 
A relationship like the following is one of these: 
 

y = a × bx 
 
Where a and b are constants. Thus if a=1 and b=2, then y would be equal to 2 to the power of 
x and we would get the following table of results: 
 

x y 
1 2 
2 4 
3 8 
4 16 
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Here y doubles for every increase in x by 1. 
 
It turns out that we find many such relationships in acoustics. People's judgements of intensity 
or pitch appear to be based on proportional changes in the physical parameter, rather than on 
incremental changes. Musical notation is based on the concept of octaves, where one octave 
spans a doubling in the fundamental frequency of the note. So for every octave we go up a 
musical scale, the frequency of the note doubles. 
 
How are we to work with such relationships, and to graph them? The first problem we have is 
that the line on our graph of y against x is not a straight line. The second is that the y values 
increase at an alarming rate. In the example above, when x reaches 20, y reaches 1 million! 
 
If you are familiar with logarithms, you will know that we can transform the equation 
 

y = a × bx 
 
to 
 

log(y) = log(a) + log(b) × x 
 
by taking logarithms of both sides of the equation. We now have an equation which looks like 
the formula for a straight line graph (slope=log(b), intercept=log(a)). 
 
If you are not familiar with logarithms, read the next section. 
 

Introduction to Logarithms 
 
If you have read this booklet this far, and have understood chapter 1, you have already 
understood the basics of logarithms. How? Because in section 1.5 we introduced the 
following formulae: 
 
 10a × 10b = 10a+b 
 10a / 10b = 10a-b 
 1 / 10a = 10-a 
 
These, you remember, were the formulae for manipulating the exponents of numbers in 
scientific notation. We use them to find out that: 
 

104 × 102  = 106 i.e.    10000 X 100 = 1000000 
 10-3 / 10-5 = 102 i.e.  0.001 / 0.00001 = 100 
 
The whole basis of logarithms is that these formulae hold even when the values a and b are 
not whole numbers. Thus the following are also correct: 
 

101.3 × 102.6 = 103.9 
100.8 / 10-1.5 = 102.3 

 
It only remains to ask what the number 101.3 actually represents. Refer to Figure 4: 
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Figure 4. Logarithm of x, plotted against x, showing how fractional logarithms might be 
assigned values. 
 
Thinking of the y-axis in Figure 4 as representing 'powers of ten' for a minute, you can see 
that 100 is 1, 101 is 10 and 102 is 100. But you can also see that we could define values for 
fractional powers of ten, for example that 101.3 would be about 20. Any number can then be 
expressed as a power of 10; just that this might require a fractional power of 10.  You can use 
the following approximate conversions to verify the calculations above: 
 

101.3 = 20  102.6 = 400   103.9 = 8000 
100.8 = 6.3  10-1.5 = 0.0315  102.3 = 200 

 
(You can check these on your calculator if it has a 10x button or a yx button - in the first case 
type the exponent and then the 10x button; in the second, type in 10, then the yx button, then 
the exponent. You will get values that are close to those above). 
 
These fractional exponents are the logarithms of the numbers we have calculated here. 1.3 is 
the logarithm of 20, since 101.3 is 20.   Likewise 2.6 is the logarithm of 400, because 102.6 is 
400. 
 
Since 10 is not a magic number, and we could have gone through the whole explanation with 
some other number just as well, we sometimes make this explicit in the words: 1.3 is the 
logarithm of 20 in the base 10, or log10(20) is 1.3. 
 
To find the logarithm of a number, you really have to use a calculator or a set of tables. 
Electronic calculators usually have a button marked log which calculates the logarithm (the 
exponent of 10) corresponding to the number you have typed in. So: 
 

log10(20)  = 1.3 
log10(6.3)  = 0.8 
log10(0.0315)  = -1.5 
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And the reason this is important? The explanation is in those formulae for manipulating 
exponents: multiplying two numbers together is the same as adding their logarithms, dividing 
two numbers is the same as subtracting their logarithms. And importantly when one number is 
raised to the power of another, this is the same as multiplying the logarithm of the first by the 
power. In summary: 
 

Y = A × B =>  log(Y) = log(A) + log(B) 
 

Y = A / B =>  log(Y) = log(A) - log(B) 
 

Y = AB  => log(Y) = log(A) × B 
 
Thus to multiply A by B using logarithms, we add together the log of A and the log of B to 
obtain the log of the answer (Y). We then change log(Y) back to a real number by calculating 
10log(y) with your calculator's 10x button or with its inverse-log function. 
 

Powers of ten 
 
Since logarithms are based on powers of 10, the correlation between scientific notation and 
logarithms is fairly simple: 
 

Number Power of 10 Logarithm 
10,000,000 107 7 
1,000,000 106 6 

100,000 105 5 
10,000 104 4 

1,000 103 3 
100 102 2 
10 101 1 
1 100 0 

0.1 10-1 -1 
0.01 10-2 -2 
0.001 10-3 -3 
0.0001 10-4 -4 
0.00001 10-5 -5 
0.000001 10-6 -6 
0.0000001 10-7 -7 

 

Logarithmic Graph Paper 
 
This is just graph paper where the divisions are spaced in such a way that equal proportional 
change becomes equal distance along the page. Thus on logarithmic graph paper, the distance 
between 1 and 10 is the same as that between 10 and 100 or between 25 and 250. See Figure 
5. 
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Figure 5. A logarithmic scale, showing equal multiples as equal distances 
 
When you plot a set of points xl, x2, x3, x4, etc on logarithmic graph paper, the spacing 
between points is the same as if you plotted log(x1), log(x2), log(x3), log(x4), etc on normal 
graph paper. 
 

2.3 Laboratory Equipment 

How to read an analogue voltmeter 
 
The voltmeters that we use in the lab experiments consist 
primarily of a meter and a range switch. The meter has two 
main scales that we are interested in: 0 – 10 above the 
mirrored area and 0 – 3 below. On the range switch we are 
interested in the black values from 1mV – 300V. 
 
To read the meter you first need to look at the range switch. 
This tells you what the meter will read when the needle is at Full Scale Deflection (FSD) i.e. 
at the end of its range. If the number on the range switch begins with a 1, i.e. 1mV, 10mV… 
you use the top scale on the meter (0-10). If it begins with a 3, i.e. 3mV, 30mV … you use the 
bottom scale (0-3) then using this information read the appropriate value off the meter. The 
values on the left-hand side of the range knob are in milliVolts and the right-hand side are in 
Volts. 
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Look at the example above. As the range knob is set to 30mV, we use the bottom scale (which 
will read 30mV full scale). Therefore the 1 corresponds to 10mV and the 2 to 20mV. Each of 
the smaller divisions correspond to 1mV (note that there are 10 divisions between 1 & 2) 
therefore the reading is 10mV + 7mV = 17mV 
 

 
 
Look at the example above. As the range knob is set to 100mV, we use the top scale (which 
will read 100mV full scale). Therefore the 1 corresponds to 10mV the 2 to 20mV … and the 9 
to 90mV. Each of the smaller divisions correspond to 2mV (note that there are only 5 
divisions between 5 & 6) therefore the reading is 50mV + 4mV = 54mV 

How to use a Sinewave Generator  
 
The oscillators that we use in the lab can be 
divided into two parts, each with a set of 
buttons and a knob. The buttons provide the 
coarse control and the knobs the fine 
control. The left-hand buttons and large 
knob are for setting the frequency (which 
we hear as changes in pitch) and the right-hand ones and the small knob below for setting the 
amplitude (which we hear as change in loudness). 
 
To set the frequency first select the appropriate range using the buttons and then use the large 
knob to set the exact frequency (note that the scale on this varies as you go round the dial). 
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In this example the x 1k button is depressed denoting that all the values on the dial should be 
multiplied by 1000. The dial is reading 1.85 which means the frequency is set to 1850Hz or 
1.85kHz 
 
Use the 4 buttons between Square and Mains to set the course amplitude and the small knob 
below for fine adjustment. The Square button changes the waveform shape and should 
normally be left in the out position. The Mains button turns the oscillator on and off. 
 

 
In this example the x100mV button is depressed denoting that all the values on the dial should 
be multiplied by 100mV. The dial is halfway between the 5 & 6 so an output voltage of about 
550mV has been set. Because it is difficult to set a voltage accurately using only this dial, all 
output levels should be checked using a voltmeter 
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2.4 Exercises 
 
Use these exercises to test your understanding of the chapter.  
 
1. Given the following (approximate) logarithms to base 10: 
 
 log(2) = 0.3  log(3) = 0.48  log(4) = 0.6  log(5) 0.7 
 

Find approximate solutions to the following sums without using a calculator: 
 

a) log(100) =    ? 
 

b) log(0.01) =    ? 
 
c) 100  =     ? 
 
d) 100.3  =     ? 

 
e) log(6) =    ? [think: log(6) = log(2)+log(3)] 
 
f) log(0.25) =    ? 

 
g) log(2/3) =    ? 
 
h) 101.7  =     ? [think: 101 × 100.7 ] 

 
2. The following measurements were made from a straight line graph: 
 

When X is 0, Y = 12 
Change in Y for 4 units along the X axis = 3.2 

 
a) What is the equation of the line? 

 
b) What is the value of Y when X is 20? 

 
c) What is the value of X when Y is 20? 
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3. Mechanics 
 
The reason you can perceive sources of noise outside your body is that vibrating objects cause 
changes in the pressure of the air and these pressure changes propagate through the air away 
from the source to your ear. If these pressure changes are large enough and within a certain 
range of frequencies, you perceive these as sound. To get an understanding of what 
constitutes sound we first need to consider some basic principles of mechanics, specifically 
the notions of force and of energy. 
 

3.1 Force 

Force 
 
Left alone, objects do not change their velocity. Here the technical term 'velocity' includes 
both speed and direction. Thus if no external forces are operating objects are either at rest or 
travelling at constant speed in a single direction. 
 
To change the velocity of an object (its speed or its direction or both) requires an applied 
force. If we throw a ball, then the ball starts at zero velocity in our hand; its velocity increases 
as our hand moves forward, until it leaves our hand at which point it has reached maximum 
velocity (the velocity of our hand). If it weren't for air or gravity it would fly at constant 
velocity in a straight line from then on. 
 
To make the ball travel faster we need to move our hand more quickly - we need to increase 
the acceleration of both ball and hand - we have to push harder. Thus we can see that the 
acceleration we can obtain is related to the size of the applied force. The relationship is a 
direct one, so we can write: 
 

Acceleration obtained is proportional to the applied force. 
 
We also know that the acceleration we can obtain will also depend on the mass of the ball - 
the greater the mass, the smaller the acceleration: 
 

Acceleration obtained is inversely proportional to object mass. 
 
Using standard units, the relationship between force, mass and acceleration can be written as 
simply: 
 

Force (kgms-2) = Mass (kg) . Acceleration (ms-2) 
 
The units for force: kgms-2 are so commonly used they are given a special name: the newton, 
written N. 
 
Going back to the car that accelerated at 2.45ms-2 in section 1.3, what was the force applied 
by the engine on the road? We need to know the mass of the car: well a Mini weighs about 
650kg, so let's use that: 

Force (N) = 650. 2.45 = 1590N 
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Dynamics and Statics 
 
Thus far we have viewed force as something that accelerates masses. However forces can 
exist in circumstances where no mass is being accelerated - those circumstances are when 
more than one force are in balance with each other. Thus when you carry a bag of shopping, 
the force caused by gravity on the shopping - its weight - pulls on your arm. The muscles in 
your arm pull back upward with exactly the same force, so the shopping doesn't move. 
However those muscles are now pulling on your shoulder blade which is pushing your 
skeleton down towards the ground - ultimately all of the force required to hold up the bag of 
shopping is relayed to the force applied by your feet on the ground (totalling your weight and 
the weight of the shopping). If the ground where you are standing is solid, it conveniently 
supports your weight that is it presses back on your feet the same force that they apply to the 
ground. Thus all forces are in balance and nothing is moving or accelerating. 
 
The tricky concept is that the forces still exist and they have measurable quantity even though 
nothing is moving. It is only when the shopping bag splits and the tins fall out that the forces 
are dynamically manifested. The mixing of forces and movement has other consequences as 
we shall see in section 3.2. 
 

Pressure 
 
In many circumstances when we measure force, we are interested in the total amount of force 
being applied: the force on the ball while it being thrown, the weight of an object pushing 
down on a table. There are forces however, where the simple quantity of force is not very 
useful: the weight of the atmosphere for example, or the force caused by a single molecule 
bouncing off the inside wall of a bicycle tyre. 
 
In these circumstances we are more interested in the amount of force per unit area. This is 
called pressure and is measured in newtons per square metre or Nm-2. This unit too, has a 
special name of its own: the pascal, written Pa. 
 
Thus a definition of pressure is: 
 

Pressure (Pa) = Force (N) / Area (m2) 
 
The pressure inside a gas is of special interest in acoustics, since we know that sound waves 
in air are manifested as small fluctuations in air pressure. The pressure in a gas is due to the 
movement of its constituent molecules which continually bump into each other and the walls 
of the containing vessel.  Inside a gas, the pressure is independent of the direction of 
measurement. 
 
The range of fluctuations of air pressure that our ears perceive as sound are very small: from 
about 0.00002Pa (20μPa) to about 200Pa. These are between 1/500 and 1/5000000000 of 
atmospheric pressure. Note both the size and the range of these numbers! 
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In the case of air, gravity keeps the atmosphere close to the surface of the Earth. At the top of 
the atmosphere the pressure is zero, at the surface of the earth the pressure is approximately 
100kPa (100,000Nm-2). This is equal to the weight of 10,000kg of air spread over 1 square 
metre. If the air had a constant density of 1kgm-3 then this pressure could be said to be the 
consequence of a column of air 10km high. Since the atmosphere actually reduces in density 
with height it is actually over 30km thick. The reason such an enormous pressure doesn't 
crush us into the ground is that the pressure is exerted in every direction both inside and 
outside our bodies - the forces are in balance. 
 
Instruments for measuring air-pressure are called barometers. Barometers are often 
calibrated in milliBars, 1 milliBar is 100Pa. Car tyre pressures are still measured in Imperial 
units: pounds per square inch (psi); 1 pound per square inch is approximately 7000Pa. 
 

3.2 Energy 
 
The concept of energy allows us to unify our ideas about a number of physical and chemical 
processes.  Whether we are talking about heat-flow (changes in temperature), work (forces in 
movement), or potential (internal energy),  the concept of energy as a unit of currency helps 
us describe and quantify change. In all processes that involve these phenomena, the units of 
energy may change form but the total number of units is constant. 
 

Different forms of energy 
 
What is energy? Well it is something you need if you are going to do some work. What is 
work? You do work when you exert a force in circumstances that you move something. So to 
lift something from the floor requires you to exert a force on it equal to its weight. In the 
lifting from the floor you are doing work, and this requires energy from you. 
 
Where does this energy come from? When you lift something there are changes in chemicals 
in the muscles of your body: energy that is stored in the bonds that tie the components of a 
molecule together is released when the bonds are broken. Where does the energy go to? Most 
of it goes into the object you've lifted off the floor, it is now further from the centre of the 
earth and has more potential to damage something if it falls. In lifting an object, you are 
transferring energy from you to the object. 
 
An object has energy if it has potential to do work. We shall call this the internal energy of 
the object. This energy can be stored in many forms: potential energy (if the object is subject 
to a force - such as gravity), kinetic energy (if the object is moving), electrical energy (if there 
is an imbalance in positive and negatively charged particles), chemical energy (molecular 
bonds), heat energy (molecular vibration), and others. 
 
Now the internal energy of an object can change for only two reasons: (i) it does some work 
on another object (in which case the internal energy of that other object increases) or (ii) it 
loses energy as heat (in which case the temperature of the surroundings increases). 
 
We are ready to make two important observations: 
 



UCL/P&L/ASH/INTROACOUSTICS/26 

1. Energy is energy regardless of what form it takes. Thus we only need one unit to 
measure energy. 

2. Energy can neither be created nor destroyed, it can only be converted from one form 
to another. 

 
We can combine these two ideas together in a single formula: 
 

Decrease in internal energy of an object = 
  Increase in heat energy of surroundings + 
   Any work done by the object (on another object) 
 
This is called the 'first law of thermodynamics' or the law of conservation of energy. 
 
And the units of energy? Well they must be the units of work: 
 

Work done (Nm) = Force (N) × Distance (m) 
 
Thus the units of energy are newton-metres or Nm. This derived unit has a special name: 
joules, written J. 
 
If you climb a set of stairs 15m high, and you weigh 66kg, then you have exerted a force of 
about 650N (66kg × 9.81ms-2) and spent about 10kJ of energy (650N × 15m). This is about as 
much energy as you benefit from eating a spoonful of plain yoghurt. However you also get 
hot and move a lot more than is absolutely necessary: so your actual energy expenditure is 
greater than this. 
 
A typical person will take in food with a total useful energy of about 10,000kJ (10MJ) per 
day, about the same as a washing machine uses to wash a load of clothes. A dry cell battery 
contains about 4kJ of energy that it can provide as electrical current. A 2-litre pan of boiling 
water has about 650kJ more energy than a pan of cold water. 
 
Units of food energy are still commonly measured in calories (more correctly kilocalories), 1 
kilo-calorie is about 4.2kJ. So a spoonful of sugar of 50 kilocalories contains about 210kJ. 
 

Power 
 
There are occasions when it is appropriate to ask 'how fast is the energy being used?' The rate 
of energy consumption or production is a useful measure of a continuous process. Thus 
although we might measure the total amount of energy generated by an exploding stick of 
dynamite, we are more likely to be interested in the amount of energy per unit time generated 
by a power station. 
 
The concept of energy rate is called power: 
 

Power (Js-1) = Energy spent (J) / Time taken (s) 
 
The units of power are joules per second or Js-1 which has the special name watts, written 
W. 
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A bar on an electric fire takes in energy from the mains supply at the rate of 1000W (or 1kW 
= 1000Js-1). Thus every hour a one bar electric fire uses 3600s × 1000Js-1 = 3.6MJ of energy. 
You will see this unit of energy (3.6MJ) referred to as a 'kilowatt-hour' and it is the basic unit 
in which we buy energy from the electricity company. 3.6MJ of electricity costs about 10p. 
 

Intensity 
 
There are other circumstances when direct measurement of energy or energy rate are 
impossible or irrelevant. Consider the measurement of the energy provided by the sun. We 
can't measure how much energy is in the sun. We can't measure the total amount of energy 
radiated per second from the sun. What we can measure is how much energy falls onto the 
surface of the earth over a given area. Here we are interested not only in energy rate, but 
energy rate per unit area - it's like saying how much energy per second is coming through my 
window from the sun. 
 
Energy rate (power) per unit area is called intensity: 
 

Intensity (Js-1m-2) = Energy rate (Js-1) / Received Area (m2) 
 
Intensity is measured in Joules per second per square metre, or watts per square metre, 
written Wm-2. 
 
The intensity of the sun at the surface of the earth on a clear day is about 1000Wm-2 - a one 
bar electric fire on every square metre of earth. 
 
We use intensity to measure sound energy, since in general we cannot capture all the energy 
radiated by a sound source - we only measure that which happens to enter the front of our 
microphone. Knowing the rate of energy hitting our microphone and its surface area we can 
calculate the intensity of the sound at the microphone. 
 

3.3 Exercises 
 
Use these exercises to test your understanding of the chapter.  
 
1. How much chocolate would I need to spread over a 1m2 surface to generate a pressure 

underneath of 1Pa? (assume g=10ms-2).  If I spread that amount of chocolate over 1/20 of 
the area, how does the pressure change? 

 
2. Winding a grandfather clock involves lifting a weight of 250g up a distance of 0.8m. 

Taking the acceleration due to gravity (g) to be 10ms-2, how much more energy does the 
fully wound clock have over the fully unwound one? 

 
3. If the intensity of a sound at 2m from the source is 10Wm-2 , what would be the intensity 

at 6m from the source if the energy was radiated equally in all directions?  (Hint: the total 
power at 2m is distributed over the surface of a sphere of radius 2m, but the total power at 
6m is distributed over the surface of a sphere of radius 6m). 
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4. Acoustics Glossary 
 
This glossary defines those terms that we use a lot in our teaching that have not been 
described earlier in this booklet.  Descriptions of more acoustic terms can be found in a hyper-
linked acoustics glossary at: http://www.sfu.ca/sonic-studio/handbook/index.html  
 

amplitude 
 
Amplitude is used to indicate the size of the variation in a signal, or the amount of a sinewave 
component present in a signal.  For sound pressure signals, amplitude is usually measured in 
Pascals.  For electrical signals, amplitude is usually measured in Volts.  When describing the 
amplitude of a sinewave component of a sound, typically a decibel scale is used, with respect 
to some reference amplitude. 
 

aperiodic 
 
An aperiodic signal has a waveform that does not repeat in time.  Noise signals are aperiodic 
by definition. 
 

bandwidth 
 
Bandwidth is a characteristic of systems most commonly applied to simple resonators.  The 
bandwidth of a simple resonator is the range of frequencies about the resonant frequency 
within which the response is within 3 decibels of the peak response.  Sometimes the term is 
applied to complex systems, in which case it usually refers to the width of a frequency region 
within which the response does not vary by more than 3 decibels. Bandwidth is the frequency 
domain measure of damping: heavily-damped systems have a wide bandwidth, lightly-
damped systems have a narrow bandwidth. 
 

damping  
 
Damping is a characteristic of systems most commonly applied to simple resonators.  The 
damping in a system refers to how rapidly vibrations in the system die away after excitation 
with an input pulse.  In heavily damped systems, vibrations die away quickly; in lightly 
damped systems, vibrations can continue for some time after the pulse has passed through.  
Don’t confuse damping with attenuation: a heavily damped system can still amplify a sound. 
 

decibel (dB) 
 
The decibel scale is a logarithmic amplitude scale, in which the size of a vibration is 
expressed in terms of its relative size to some reference vibration.  To convert a relative 
amplitude to decibels, it is satisfactory to take the logarithm of the ratio (to base 10) and to 
multiply by 20.  Decibels are convenient to use in acoustics because many systems operate in 
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a multiplicative manner rather than in an additive manner.  For example an amplifier might 
change the amplitude of a signal by a factor of 10 rather than by 10V.  A doubling of 
amplitude is equivalent to a change of 6dB; an increase by a factor of 10 is equivalent to a 
change of 20dB.  In the dBSPL scale of sound pressure, the reference amplitude is taken to be 
20μPa. 
 

filter 
 
A filter is a system that has been designed to change the spectral content of a signal for a 
particular purpose.  For example, a low-pass filter is a system which strongly attenuates 
frequency components in a signal above a given cut-off frequency.  A high-pass filter is a 
system that strongly attenuates frequency components in a signal below a given cut-off 
frequency.  A band-pass filter is a system that strongly attenuates frequency components 
outside a given range of frequencies.  The vocal tract is sometimes called a filter when it is 
being used to shape the larynx excitation signal. 
 

forced oscillation 
 
The frequency response of a system can be explored by passing sinewave signals through the 
system, and by measuring the relative size of the output amplitude with respect to the input.   
The forcing of a system to vibrate at a single sinewave frequency is called forced oscillation. 
 

formant 
 
A formant is another name for a resonance in the vocal tract that leads to a peak in the 
frequency response of the vocal tract system.  The name formant comes from the shaping 
effect these resonances have on larynx excitation – they give form to the output spectrum. 
 

frequency 
 
The frequency of a sinewave refers to the number of complete cycles of vibration completed 
in one second.  The frequency of sinewave vibrations is measure in hertz (Hz).  Do not use 
frequency to describe the repetition frequency of waveforms other than sinewaves; use 
fundamental frequency instead. 
 

frequency response 
 
The frequency response of a system is a graph of how the system responds to sinewaves of 
different frequency.  A frequency response graph plots response (the ratio of the output 
amplitude to the input amplitude) for sinewave signals as a function of the frequency of those 
sinewaves. 
 



UCL/P&L/ASH/INTROACOUSTICS/30 

Fourier analysis 
 
Fourier analysis refers to the decomposition of a section of signal into a sum of sinewave 
components.  The shape of the input waveform is analysed in terms of the frequency, 
amplitude and phase of a number of constituent sinewaves. The sinewave amplitude and 
frequency information is commonly plotted on a spectrum.  Information is neither created nor 
destroyed by Fourier analysis, since the addition of the component sinewaves perfectly 
recreates the original signal.  There are many similarities between Fourier analysis and the 
kind of frequency selective processing that takes place in the ear. 
 

fundamental frequency 
 
Fundamental frequency is a measure of the repetition rate of complex periodic signals; that is 
the number of repetitions of the basic waveform shape that occur in one second.  Fundamental 
frequency is measured in hertz (Hz).  You usually do not use the term fundamental frequency 
with sinewave signals, and it has no meaning for aperiodic signals. 
 

harmonic 
 
A harmonic is one of the constituent sinewave components found from Fourier analysis of a 
complex periodic waveform.  Complex periodic signals have constituent sinewaves that occur 
only at whole-number multiples of the fundamental frequency.  The first harmonic occurs at 
the fundamental frequency (and hence is sometimes called “the fundamental”), the second 
harmonic occurs at twice the fundamental frequency, the third at three times, and so on. 
 

loudness  
 
Loudness is one of three perceptual attributes of sound attested by human listeners.  Loudness 
relates to the quantity of sound, and seems to be strongly affected by the amplitude of the 
pressure vibrations.  However loudness is not linearly related to pressure change, and is more 
closely related the logarithm of the amplitude.  This is why a decibel scale is commonly used 
for instrumental analysis of sounds. 
 

noise  
 
A noise signal is another name for an aperiodic signal.  Do not use the term noise when you 
just mean “sound” or “interfering signal”.  Sometimes it is convenient to use the term 
“background noise” to refer to environmental sounds present when a recording is being made; 
and “system noise” to refer to unwanted signals added by systems as part of their operation. 
 

periodic 
 
A periodic signal has a repetitive waveform shape.  Such signals are commonly produced by 
oscillating or cyclic sound generation systems. A distinction is sometimes drawn between 
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simple and complex periodic waveforms.  Simple periodic waveforms are sinewaves; 
complex periodic waveforms are repetitive but not sinusoidal. 
 

phase 
 
The phase of a sinewave signal refers to the position in the sinewave cycle attained by the 
signal at a given time.  Since a sinewave waveform shape can be simply related to the height 
of a point on a rotating disk, the phase of a sinewave is often measured as the angle a line 
drawn from the axis to the point makes with the horizontal.  Thus phase is commonly 
measured in units of angle, for example degrees (0-360°) or in radians (0-2π). 
 

pitch 
 
Pitch is one of three perceptual attributes of sound attested by human listeners. Pitch relates to 
the “musical quality” of complex periodic sounds, and seems to be related to the fundamental 
frequency of the sound.  Although pitch changes smoothly with increasing fundamental 
frequency, it appears that pitch is not linearly related to fundamental frequency, and there is 
strong evidence for a more logarithmic relationship. 
 

pulse 
 
A pulse is a short transient signal.  A narrow pulse is often used to explore the frequency 
response of systems, since its spectrum has approximately the same amplitude at every 
sinewave frequency. 
 

pulse train 
 
A pulse train is a complex periodic signal made up of a regular sequence of pulses. 
 

resonance 
 
Resonance occurs when a system responds strongly to certain input signals.  This happens 
when a frequency component in the input signal matches a preferred frequency of vibration of 
the system.  The output of the system at resonance is larger than at other frequencies.  
Resonance can be measured by looking at the relative change in the amplitude of frequency 
components in the signal close to the resonant frequency. 
 

resonator 
 
A resonator is a system designed to exhibit strong resonance at one or more resonant 
frequencies.  When a resonator is excited by an input sinewave signal at one of its resonant 
frequencies, a large response occurs.  A simple resonator has exactly one resonant frequency. 
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sinewave 
 
The term sinewave is short for sinusoidal waveform, and refers to a particular periodic 
waveform shape that follows a trigonometric sine function.  This shape of signal is found in 
the simplest oscillating systems, for example a pendulum, a tuning fork, or a mass on a spring.  
Mathematically the sinewave signal y(t) has the form a.sin(2πft+φ) where a=amplitude, 
f=frequency, t=time, and φ=phase. 
 

source-filter model 
 
The source-filter model of speech production provides a powerful explanation of the form of 
the spectra of speech sounds.  In the source-filter model it is assumed that we can describe the 
generation of sounds in the vocal tract separately and independently from their subsequent 
shaping by their passage through the vocal tract.  This is largely true for vowels, roughly true 
for fricatives and untrue for sounds like whistles.  Thus for a vowel spectrum explained by the 
source filter model, we would say that the source is larynx excitation which has a particular 
spectrum independent of the vocal tract shape; and the filter is the vocal tract tube from larynx 
to lips that shapes the sound independently of the settings of the larynx. 
 

spectrogram 
 
A spectrogram is a graphical representation of how the spectral composition of a sound 
changes with time.  The horizontal axis is time, the vertical axis is frequency (of sinewave 
components) and the amplitude of the sinewaves components of the signal at any given time 
and frequency is displayed on a grey scale.  Conventionally, white is chosen for least 
amplitude, and black is chosen for most amplitude.  For speech sounds, the frequency axis 
usually extends to 8kHz, and the amplitude scale covers the top 50dB of the amplitude of 
sinewave components. 
 

spectrum (spectra, spectral) 
 
A spectrum is a graphical representation of the amplitude of the sinewave components present 
in a signal within a given time window.  A spectrum is calculated from a section of signal 
using Fourier analysis.  A spectrum graph plots the amplitude of each sinewave component 
against the frequency of the component.  The amplitude scale of a spectrum is commonly 
expressed in decibels.  The phases of component sinewaves are not displayed on a 
conventional spectrum. 
 

timbre 
 
Timbre is one of three perceptual attributes of sound attested by human listeners. Timbre 
relates to the general quality of sounds other than that explained by pitch or loudness, and 
seems to be related to the overall spectral shape of the sound.  The perceived timbre of 
complex sounds is well explained by a bandpass filter analysis matching the spectral analysis 
performed by human ears. 
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waveform 
 
A waveform is a graph of how the amplitude of a signal changes with time. 
 

white noise 
 
White noise is a particular kind of noise signal that has approximately equivalent average 
amplitude of all its sinewave components. 
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